Project description:Herpesviruses encode microRNAs (miRNAs) that target both virus and host genes; however, their role in herpesvirus biology is understood poorly. We identified previously eight miRNAs encoded by ovine herpesvirus-2 (OvHV-2), the causative agent of malignant catarrhal fever (MCF), and have now investigated the role of these miRNAs in regulating expression of OvHV-2 genes that play important roles in virus biology. ORF20 (cell cycle inhibition), ORF50 (reactivation) and ORF73 (latency maintenance) each contain predicted targets for several OvHV-2 miRNAs. Co-transfection of miRNA mimics with luciferase reporter constructs containing the predicted targets showed the 5' UTRs of ORF20 and ORF73 contain functional targets for ovhv-miR-2 and ovhv2-miR-8, respectively, and the 3' UTR of ORF50 contains a functional target for ovhv2-miR-5. Transfection of BJ1035 cells (an OvHV-2-infected bovine T-cell line) with the relevant miRNA mimic resulted in a significant decrease in ORF50 and a smaller but non-significant decrease in ORF20. However, we were unable to demonstrate a decrease in ORF73. MCF is a disease of dysregulated lymphocyte proliferation; miRNA inhibition of ORF20 expression may play a role in this aberrant lymphocyte proliferation. The proteins encoded by ORF50 and ORF73 play opposing roles in latency. It has been hypothesized that miRNA-induced inhibition of virus genes acts to ensure that fluctuations in virus mRNA levels do not result in reactivation under conditions that are unfavourable for viral replication and our data supported this hypothesis.
Project description:A fluorogenic PCR specific for ovine herpesvirus 2 (OvHV-2) DNA was developed and compared to a previously established conventional seminested PCR. Testing of a total of 152 blood samples from both positive and negative animals revealed that the results of both assays corresponded to each other in 100% of the cases. A second fluorogenic PCR for genomic sheep DNA was required to normalize the quantity of viral DNA in the sample. Separate standard curves had to be constructed for each PCR. The analytical sensitivity of the new PCRs ranged between at least 10 copies and sometimes even 1 copy of target DNA per reaction mixture. In dilution series of the target DNAs, linear decreases of the signals were observed over 7 orders of magnitude. Thus, it was possible to calculate the amounts of viral DNA in relation to the amounts of cellular DNA by normalizing the absolute quantity of OvHV-2 DNA with the amount of genomic sheep DNA. By this technique, it was possible for the first time to quantitatively characterize the course of OvHV-2 replication in naturally infected sheep.
Project description:Classical bovine spongiform encephalopathy (BSE) in cattle was caused by the recycling and feeding of meat and bone meal contaminated with a transmissible spongiform encephalopathy (TSE) agent but its origin remains unknown. This study aimed to determine whether atypical scrapie could cause disease in cattle and to compare it with other known TSEs in cattle. Two groups of calves (five and two) were intracerebrally inoculated with atypical scrapie brain homogenate from two sheep with atypical scrapie. Controls were five calves intracerebrally inoculated with saline solution and one non-inoculated animal. Cattle were clinically monitored until clinical end-stage or at least 96 months post-inoculation (mpi). After euthanasia, tissues were collected for TSE diagnosis and potential transgenic mouse bioassay. One animal was culled with BSE-like clinical signs at 48 mpi. The other cattle either developed intercurrent diseases leading to cull or remained clinical unremarkable at study endpoint, including control cattle. None of the animals tested positive for TSEs by Western immunoblot and immunohistochemistry. Bioassay of brain samples from the clinical suspect in Ov-Tg338 and Bov-Tg110 mice was also negative. By contrast, protein misfolding cyclic amplification detected prions in the examined brains from atypical scrapie-challenged cattle, which had a classical BSE-like phenotype. This study demonstrates for the first time that a TSE agent with BSE-like properties can be amplified in cattle inoculated with atypical scrapie brain homogenate.
Project description:We hypothesized that the gene expression pattern of OvHV-2 may be important to understand the pathogenesis of malignant catarrhal fever (MCF). Therefore, RNA was extracted from lymph nodes of animals with MCF and healthy controls to be analyzed by a custom-made microarray. Two regions on the viral genome were transcriptionally active, one encoding a homologue to the latency-associated nuclear antigen (ORF73) of other gamma herpesviruses, the other with no predicted open reading frame. Keywords: Disease state analysis
Project description:Ovine herpesvirus-2 (OvHV-2) infects most sheep, where it establishes an asymptomatic, latent infection. Infection of susceptible hosts e.g. cattle and deer results in malignant catarrhal fever, a fatal lymphoproliferative disease characterised by uncontrolled lymphocyte proliferation and non MHC restricted cytotoxicity. The same cell populations are infected in both cattle and sheep but only in cattle does virus infection cause dysregulation of cell function leading to disease. The mechanism by which OvHV-2 induces this uncontrolled proliferation is unknown. A number of herpesviruses have been shown to encode microRNAs (miRNAs) that have roles in control of both viral and cellular gene expression. We hypothesised that OvHV-2 encodes miRNAs and that these play a role in pathogenesis. Analysis of massively parallel sequencing data from an OvHV-2 persistently-infected bovine lymphoid cell line (BJ1035) identified forty-five possible virus-encoded miRNAs. We previously confirmed the expression of eight OvHV-2 miRNAs by northern hybridization. In this study we used RT-PCR to confirm the expression of an additional twenty-seven OvHV-2-encoded miRNAs. All thirty-five OvHV-2 miRNAs are expressed from the same virus genome strand and the majority (30) are encoded in an approximately 9 kb region that contains no predicted virus open reading frames. Future identification of the cellular and virus targets of these miRNAs will inform our understanding of MCF pathogenesis.
Project description:BackgroundMalignant catarrhal fever (MCF) is a highly fatal lymphoproliferative disease of cattle, deer, bison, water buffalo, and pigs caused by the gamma-herpesviruses alcelaphine herpesvirus-1 (AlHV-1) and ovine herpesvirus-2 (OvHV-2).ObjectivesThis study aimed to determine the prevalence of OvHV-2 in sheep, goats, cattle, and buffalo in Rawalpindi and Islamabad, Pakistan, by applying molecular and phylogenetic methods.MethodsBlood samples were aspirated from sheep (n = 54), goat (n = 50), cattle (n = 46) and buffalo (n= 50) at a slaughterhouse and several farms. The samples were subjected to heminested polymerase chain reaction (PCR), followed by sequencing and phylogenetic analysis of the OvHV-2 POL gene and the OvHV-2 ORF75 tegument protein gene.ResultsThe highest percentage of MCF positive samples was in sheep (13%), whereas goat, cattle, and buffalo had lower positive percentages, 11%, 9%, and 6.5%, respectively. Four OvHV-2-positive PCR products obtained from sheep samples were sequenced. The sequences obtained were submitted to the NCBI GenBank database (MK852173 for the POL gene; MK840962, MK852171, and MK852172 for the ORF75 tegument protein gene). Phylogenetic analysis revealed a close similarity of study sequences with those of worldwide samples.ConclusionsThis study is the first cross-sectional study on the prevalence and molecular detection of OvHV-2 in apparently healthy cattle and buffalo that could be carrying OvHV-2 acquired from OvHV-2-positive sheep and goats. The results indicate that OvHV-2 is circulating in Pakistan. Further studies are needed to characterize OvHV-2 and elucidate further its prevalence.
Project description:We hypothesized that the gene expression pattern of OvHV-2 may be important to understand the pathogenesis of malignant catarrhal fever (MCF). Therefore, RNA was extracted from lymph nodes of animals with MCF and healthy controls to be analyzed by a custom-made microarray. Two regions on the viral genome were transcriptionally active, one encoding a homologue to the latency-associated nuclear antigen (ORF73) of other gamma herpesviruses, the other with no predicted open reading frame. Keywords: Disease state analysis Two biological replicates with two technical replicates each, with one of the technical replicates being a dye-swap.
Project description:IntroductionCombined genotyping/whole genome sequencing and epidemiological data suggest that in endemic settings only a minority of Clostridium difficile infection, CDI, is acquired from other cases. Asymptomatic patients are a potential source for many unexplained cases.MethodsWe prospectively screened a cohort of medical inpatients in a UK teaching hospital for asymptomatic C. difficile carriage using stool culture. Electronic and questionnaire data were used to determine risk factors for asymptomatic carriage by logistic regression. Carriage isolates were compared with all hospital/community CDI cases from the same geographic region, from 12 months before the study to 3 months after, using whole genome sequencing and hospital admission data, assessing particularly for evidence of onward transmission from asymptomatic cases.ResultsOf 227 participants recruited, 132 provided ?1 stool samples for testing. 18 participants were culture-positive for C. difficile, 14/132(11%) on their first sample. Independent risk factors for asymptomatic carriage were patient reported loose/frequent stool (but not meeting CDI criteria of ?3 unformed stools in 24 hours), previous overnight hospital stay within 6 months, and steroid/immunosuppressant medication in the last 6 months (all p?0.02). Surprisingly antibiotic exposure in the last 6 months was independently associated with decreased risk of carriage (p?=?0.005). The same risk factors were identified excluding participants reporting frequent/loose stool. 13/18(72%) asymptomatically colonised patients carried toxigenic strains from common disease-causing lineages found in cases. Several plausible transmission events to asymptomatic carriers were identified, but in this relatively small study no clear evidence of onward transmission from an asymptomatic case was seen.ConclusionsTransmission events from any one asymptomatic carrier are likely to be relatively rare, but as asymptomatic carriage is common, it may still be an important source of CDI, which could be quantified in larger studies. Risk factors established for asymptomatic carriage may help identify patients for inclusion in such studies.