Unknown

Dataset Information

0

RP58 controls neuron and astrocyte differentiation by downregulating the expression of Id1-4 genes in the developing cortex.


ABSTRACT: Appropriate number of neurons and glial cells is generated from neural stem cells (NSCs) by the regulation of cell cycle exit and subsequent differentiation. Although the regulatory mechanism remains obscure, Id (inhibitor of differentiation) proteins are known to contribute critically to NSC proliferation by controlling cell cycle. Here, we report that a transcriptional factor, RP58, negatively regulates all four Id genes (Id1-Id4) in developing cerebral cortex. Consistently, Rp58 knockout (KO) mice demonstrated enhanced astrogenesis accompanied with an excess of NSCs. These phenotypes were mimicked by the overexpression of all Id genes in wild-type cortical progenitors. Furthermore, Rp58 KO phenotypes were rescued by the knockdown of all Id genes in mutant cortical progenitors but not by the knockdown of each single Id gene. Finally, we determined p57 as an effector gene of RP58-Id-mediated cell fate control. These findings establish RP58 as a novel key regulator that controls the self-renewal and differentiation of NSCs and restriction of astrogenesis by repressing all Id genes during corticogenesis.

SUBMITTER: Hirai S 

PROVIDER: S-EPMC3297993 | biostudies-literature | 2012 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

RP58 controls neuron and astrocyte differentiation by downregulating the expression of Id1-4 genes in the developing cortex.

Hirai Shinobu S   Miwa Akiko A   Ohtaka-Maruyama Chiaki C   Kasai Masataka M   Okabe Shigeo S   Hata Yutaka Y   Okado Haruo H  

The EMBO journal 20120110 5


Appropriate number of neurons and glial cells is generated from neural stem cells (NSCs) by the regulation of cell cycle exit and subsequent differentiation. Although the regulatory mechanism remains obscure, Id (inhibitor of differentiation) proteins are known to contribute critically to NSC proliferation by controlling cell cycle. Here, we report that a transcriptional factor, RP58, negatively regulates all four Id genes (Id1-Id4) in developing cerebral cortex. Consistently, Rp58 knockout (KO)  ...[more]

Similar Datasets

2014-12-08 | E-GEOD-34327 | biostudies-arrayexpress
2014-12-08 | GSE34327 | GEO
| S-EPMC7206051 | biostudies-literature
| S-EPMC4253845 | biostudies-other
| S-EPMC10501387 | biostudies-literature
| S-EPMC10110431 | biostudies-literature
| S-EPMC8067918 | biostudies-literature
| S-EPMC4304729 | biostudies-literature
| S-EPMC7123847 | biostudies-literature
| S-EPMC4819225 | biostudies-literature