Host immune responses to a viral immune modulating protein: immunogenicity of viral interleukin-10 in rhesus cytomegalovirus-infected rhesus macaques.
Ontology highlight
ABSTRACT: BACKGROUND:Considerable evidence has accumulated that multiple viruses, bacteria, and protozoa manipulate interleukin-10 (IL-10)-mediated signaling through the IL-10 receptor (IL-10R) in ways that could enable establishment of a persistent microbial infection. This suggests that inhibition of pathogen targeting of IL-10/IL-10R signaling could prevent microbial persistence. Human cytomegalovirus (HCMV) and rhesus cytomegalovirus (RhCMV) express a viral interleukin-10 (cmvIL-10 and rhcmvIL-10, respectively) with comparable immune modulating properties in vitro to that of their host's cellular IL-10 (cIL-10). A prior study noted that rhcmvIL-10 alters innate and adaptive immunity to RhCMV in vivo, consistent with a central role for rhcmvIL-10 during acute virus-host interactions. Since cmvIL-10 and rhcmvIL-10 are extremely divergent from the cIL-10 of their respective hosts, vaccine-mediated neutralization of their function could inhibit establishment of viral persistence without inhibition of cIL-10. METHODS AND FINDINGS:As a prelude to evaluating cmvIL-10-based vaccines in humans, the rhesus macaque model of HCMV was used to interrogate peripheral and mucosal immune responses to rhcmvIL-10 in RhCMV-infected animals. ELISA were used to detect rhcmvIL-10-binding antibodies in plasma and saliva, and an IL-12-based bioassay was used to quantify plasma antibodies that neutralized rhcmvIL-10 function. rhcmvIL-10 is highly immunogenic during RhCMV infection, stimulating high avidity rhcmvIL-10-binding antibodies in the plasma of all infected animals. Most infected animals also exhibited plasma antibodies that partially neutralized rhcmvIL-10 function but did not cross-neutralize the function of rhesus cIL-10. Notably, minimally detectable rhcmvIL-10-binding antibodies were detected in saliva. CONCLUSION:This study demonstrates that rhcmvIL-10, as a surrogate for cmvIL-10, is a viable vaccine candidate because (1) it is highly immunogenic during natural RhCMV infection, and (2) neutralizing antibodies to rhcmvIL-10 do not cross-react with rhesus cIL-10. Exceedingly low rhcmvIL-10 antibodies in saliva further suggest that the oral mucosa, which is critical in RhCMV natural history, is associated with suboptimal anti-rhcmvIL-10 antibody responses.
SUBMITTER: Eberhardt MK
PROVIDER: S-EPMC3360012 | biostudies-literature | 2012
REPOSITORIES: biostudies-literature
ACCESS DATA