Unknown

Dataset Information

0

Effect of aspect ratio and deformability on nanoparticle extravasation through nanopores.


ABSTRACT: We describe the fabrication of filamentous hydrogel nanoparticles using a unique soft lithography based particle molding process referred to as PRINT (particle replication in nonwetting templates). The nanoparticles possess a constant width of 80 nm, and we varied their lengths ranging from 180 to 5000 nm. In addition to varying the aspect ratio of the particles, the deformability of the particles was tuned by varying the cross-link density within the particle matrix. Size characteristics such as hydrodynamic diameter and persistence length of the particles were analyzed using dynamic light scattering and electron microscopy techniques, respectively, while particle deformability was assessed by atomic force microscopy. Additionally, the ability of the particles to pass through membranes containing 0.2 ?m pores was assessed by means of a simple filtration technique, and particle recovery was determined using fluorescence spectroscopy. The results show that particle recovery is mostly independent of aspect ratio at all cross-linker concentrations utilized, with the exception of 96 wt % PEG diacrylate 80 × 5000 nm particles, which showed the lowest percent recovery.

SUBMITTER: Kersey FR 

PROVIDER: S-EPMC3374061 | biostudies-literature | 2012 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Effect of aspect ratio and deformability on nanoparticle extravasation through nanopores.

Kersey Farrell R FR   Merkel Timothy J TJ   Perry Jillian L JL   Napier Mary E ME   DeSimone Joseph M JM  

Langmuir : the ACS journal of surfaces and colloids 20120529 23


We describe the fabrication of filamentous hydrogel nanoparticles using a unique soft lithography based particle molding process referred to as PRINT (particle replication in nonwetting templates). The nanoparticles possess a constant width of 80 nm, and we varied their lengths ranging from 180 to 5000 nm. In addition to varying the aspect ratio of the particles, the deformability of the particles was tuned by varying the cross-link density within the particle matrix. Size characteristics such a  ...[more]

Similar Datasets

| S-EPMC4453161 | biostudies-literature
| S-EPMC8240089 | biostudies-literature
| S-EPMC5207216 | biostudies-literature
| S-EPMC5525544 | biostudies-literature
| S-EPMC4726408 | biostudies-literature
| S-EPMC3125420 | biostudies-literature
| S-EPMC5736966 | biostudies-literature
| S-EPMC10634189 | biostudies-literature
| S-EPMC5793667 | biostudies-literature
| S-EPMC5241677 | biostudies-literature