Unknown

Dataset Information

0

X-ray structures of magnesium and manganese complexes with the N-terminal domain of calmodulin: insights into the mechanism and specificity of metal ion binding to an EF-hand.


ABSTRACT: Calmodulin (CaM), a member of the EF-hand superfamily, regulates many aspects of cell function by responding specifically to micromolar concentrations of Ca(2+) in the presence of an ~1000-fold higher concentration of cellular Mg(2+). To explain the structural basis of metal ion binding specificity, we have determined the X-ray structures of the N-terminal domain of calmodulin (N-CaM) in complexes with Mg(2+), Mn(2+), and Zn(2+). In contrast to Ca(2+), which induces domain opening in CaM, octahedrally coordinated Mg(2+) and Mn(2+) stabilize the closed-domain, apo-like conformation, while tetrahedrally coordinated Zn(2+) ions bind at the protein surface and do not compete with Ca(2+). The relative positions of bound Mg(2+) and Mn(2+) within the EF-hand loops are similar to those of Ca(2+); however, the Glu side chain at position 12 of the loop, whose bidentate interaction with Ca(2+) is critical for domain opening, does not bind directly to either Mn(2+) or Mg(2+), and the vacant ligand position is occupied by a water molecule. We conclude that this critical interaction is prevented by specific stereochemical constraints imposed on the ligands by the EF-hand ?-scaffold. The structures suggest that Mg(2+) contributes to the switching off of calmodulin activity and possibly other EF-hand proteins at the resting levels of Ca(2+). The Mg(2+)-bound N-CaM structure also provides a unique view of a transiently bound hydrated metal ion and suggests a role for the hydration water in the metal-induced conformational change.

SUBMITTER: Senguen FT 

PROVIDER: S-EPMC3448793 | biostudies-literature | 2012 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

X-ray structures of magnesium and manganese complexes with the N-terminal domain of calmodulin: insights into the mechanism and specificity of metal ion binding to an EF-hand.

Senguen F Timur FT   Grabarek Zenon Z  

Biochemistry 20120727 31


Calmodulin (CaM), a member of the EF-hand superfamily, regulates many aspects of cell function by responding specifically to micromolar concentrations of Ca(2+) in the presence of an ~1000-fold higher concentration of cellular Mg(2+). To explain the structural basis of metal ion binding specificity, we have determined the X-ray structures of the N-terminal domain of calmodulin (N-CaM) in complexes with Mg(2+), Mn(2+), and Zn(2+). In contrast to Ca(2+), which induces domain opening in CaM, octahe  ...[more]

Similar Datasets

| S-EPMC3078997 | biostudies-literature
| S-EPMC2649098 | biostudies-literature
| S-EPMC3411679 | biostudies-literature
| S-EPMC2742686 | biostudies-literature
| S-EPMC5657546 | biostudies-literature
| S-EPMC6561220 | biostudies-literature
| S-EPMC8507399 | biostudies-literature
| S-EPMC3818075 | biostudies-literature
| S-EPMC2649110 | biostudies-literature
| S-EPMC4600981 | biostudies-literature