The ATPase pathway that drives the kinesin-14 Kar3Vik1 powerstroke.
Ontology highlight
ABSTRACT: Kar3, a Saccharomyces cerevisiae microtubule minus-end-directed kinesin-14, dimerizes with either Vik1 or Cik1. The C-terminal globular domain of Vik1 exhibits the structure of a kinesin motor domain and binds microtubules independently of Kar3 but lacks a nucleotide binding site. The only known function of Kar3Vik1 is to cross-link parallel microtubules at the spindle poles during mitosis. In contrast, Kar3Cik1 depolymerizes microtubules during mating but cross-links antiparallel microtubules in the spindle overlap zone during mitosis. A recent study showed that Kar3Vik1 binds across adjacent microtubule protofilaments and uses a minus-end-directed powerstroke to drive ATP-dependent motility. The presteady-state experiments presented here extend this study and establish an ATPase model for the powerstroke mechanism. The results incorporated into the model indicate that Kar3Vik1 collides with the microtubule at 2.4 ?m(-1) s(-1) through Vik1, promoting microtubule binding by Kar3 followed by ADP release at 14 s(-1). The tight binding of Kar3 to the microtubule destabilizes the Vik1 interaction with the microtubule, positioning Kar3Vik1 for the start of the powerstroke. Rapid ATP binding to Kar3 is associated with rotation of the coiled-coil stalk, and the postpowerstroke ATP hydrolysis at 26 s(-1) is independent of Vik1, providing further evidence that Vik1 rotates with the coiled coil during the powerstroke. Detachment of Kar3Vik1 from the microtubule at 6 s(-1) completes the cycle and allows the motor to return to its initial conformation. The results also reveal key differences in the ATPase cycles of Kar3Vik1 and Kar3Cik1, supporting the fact that these two motors have distinctive biological functions.
SUBMITTER: Chen CJ
PROVIDER: S-EPMC3481271 | biostudies-literature | 2012 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA