Ontology highlight
ABSTRACT: Background
Heart failure is a growing cause of morbidity and mortality. Cardiac phosphatidylinositol 3-kinase signaling promotes cardiomyocyte survival and function, but it is paradoxically activated in heart failure, suggesting that chronic activation of this pathway may become maladaptive. Here, we investigated the downstream phosphatidylinositol 3-kinase effector, serum- and glucocorticoid-regulated kinase-1 (SGK1), in heart failure and its complications.Methods and results
We found that cardiac SGK1 is activated in human and murine heart failure. We investigated the role of SGK1 in the heart by using cardiac-specific expression of constitutively active or dominant-negative SGK1. Cardiac-specific activation of SGK1 in mice increased mortality, cardiac dysfunction, and ventricular arrhythmias. The proarrhythmic effects of SGK1 were linked to biochemical and functional changes in the cardiac sodium channel and could be reversed by treatment with ranolazine, a blocker of the late sodium current. Conversely, cardiac-specific inhibition of SGK1 protected mice after hemodynamic stress from fibrosis, heart failure, and sodium channel alterations.Conclusions
SGK1 appears both necessary and sufficient for key features of adverse ventricular remodeling and may provide a novel therapeutic target in cardiac disease.
SUBMITTER: Das S
PROVIDER: S-EPMC3484211 | biostudies-literature | 2012 Oct
REPOSITORIES: biostudies-literature
Das Saumya S Aiba Takeshi T Rosenberg Michael M Hessler Katherine K Xiao Chunyang C Quintero Pablo A PA Ottaviano Filomena G FG Knight Ashley C AC Graham Evan L EL Boström Pontus P Morissette Michael R MR del Monte Federica F Begley Michael J MJ Cantley Lewis C LC Ellinor Patrick T PT Tomaselli Gordon F GF Rosenzweig Anthony A
Circulation 20120926 18
<h4>Background</h4>Heart failure is a growing cause of morbidity and mortality. Cardiac phosphatidylinositol 3-kinase signaling promotes cardiomyocyte survival and function, but it is paradoxically activated in heart failure, suggesting that chronic activation of this pathway may become maladaptive. Here, we investigated the downstream phosphatidylinositol 3-kinase effector, serum- and glucocorticoid-regulated kinase-1 (SGK1), in heart failure and its complications.<h4>Methods and results</h4>We ...[more]