Unknown

Dataset Information

0

A tutorial in displaying mass spectrometry-based proteomic data using heat maps.


ABSTRACT: Data visualization plays a critical role in interpreting experimental results of proteomic experiments. Heat maps are particularly useful for this task, as they allow us to find quantitative patterns across proteins and biological samples simultaneously. The quality of a heat map can be vastly improved by understanding the options available to display and organize the data in the heat map. This tutorial illustrates how to optimize heat maps for proteomics data by incorporating known characteristics of the data into the image. First, the concepts used to guide the creating of heat maps are demonstrated. Then, these concepts are applied to two types of analysis: visualizing spectral features across biological samples, and presenting the results of tests of statistical significance. For all examples we provide details of computer code in the open-source statistical programming language R, which can be used for biologists and clinicians with little statistical background. Heat maps are a useful tool for presenting quantitative proteomic data organized in a matrix format. Understanding and optimizing the parameters used to create the heat map can vastly improve both the appearance and the interoperation of heat map data.

SUBMITTER: Key M 

PROVIDER: S-EPMC3489527 | biostudies-literature | 2012

REPOSITORIES: biostudies-literature

altmetric image

Publications

A tutorial in displaying mass spectrometry-based proteomic data using heat maps.

Key Melissa M  

BMC bioinformatics 20121105


Data visualization plays a critical role in interpreting experimental results of proteomic experiments. Heat maps are particularly useful for this task, as they allow us to find quantitative patterns across proteins and biological samples simultaneously. The quality of a heat map can be vastly improved by understanding the options available to display and organize the data in the heat map. This tutorial illustrates how to optimize heat maps for proteomics data by incorporating known characterist  ...[more]

Similar Datasets

| S-EPMC2659628 | biostudies-literature
| S-EPMC2464586 | biostudies-literature
| S-EPMC3700613 | biostudies-literature
| S-EPMC4082383 | biostudies-literature
| S-EPMC6916233 | biostudies-literature
2024-06-16 | GSE229334 | GEO
| S-EPMC7397514 | biostudies-literature
| S-EPMC4716738 | biostudies-other
| S-BSST968 | biostudies-other
| S-EPMC7610686 | biostudies-literature