Unknown

Dataset Information

0

Importance of the sphingoid base length for the membrane properties of ceramides.


ABSTRACT: The sphingoid bases of sphingolipids, including ceramides, can vary in length from 12 to >20 carbons. To study how such length variation affects the bilayer properties of ceramides, we synthesized ceramides consisting of a C12-, C14-, C16-, C18-, or C20-sphing-4-enin derivative coupled to palmitic acid. The ceramides were studied in mixtures with palmitoyloleoylphosphocholine (POPC) and/or palmitoylsphingomyelin (PSM), and in more complex bilayers also containing cholesterol. The trans-parinaric acid lifetimes showed that 12:1- and 14:1-PCer failed to increase the order of POPC bilayers, whereas 16:1-, 18:1-, and 20:1-PCer induced ordered- or gel-phase formation. Nevertheless, all of the analogs were able to thermally stabilize PSM, and a chain-length-dependent increase in the main phase transition temperature of equimolar PSM/Cer bilayers was revealed by differential scanning calorimetry. Similar thermal stabilization of PSM-rich domains by the ceramides was observed in POPC bilayers with a trans-parinaric acid-quenching assay. A cholestatrienol-quenching assay and sterol partitioning experiments showed that 18:1- and 20:1-PCer formed sterol-excluding gel phases with PSM, reducing the overall bilayer affinity of sterol. The effect of 16:1-PCer on sterol distribution was less dramatic, and no displacement of sterol from the PSM environment was observed with 12:1- and 14:1-PCer. The results are discussed in relation to other structural features that affect the bilayer properties of ceramides.

SUBMITTER: Maula T 

PROVIDER: S-EPMC3491676 | biostudies-literature | 2012 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Importance of the sphingoid base length for the membrane properties of ceramides.

Maula Terhi T   Artetxe Ibai I   Grandell Pia-Maria PM   Slotte J Peter JP  

Biophysical journal 20121101 9


The sphingoid bases of sphingolipids, including ceramides, can vary in length from 12 to >20 carbons. To study how such length variation affects the bilayer properties of ceramides, we synthesized ceramides consisting of a C12-, C14-, C16-, C18-, or C20-sphing-4-enin derivative coupled to palmitic acid. The ceramides were studied in mixtures with palmitoyloleoylphosphocholine (POPC) and/or palmitoylsphingomyelin (PSM), and in more complex bilayers also containing cholesterol. The trans-parinaric  ...[more]

Similar Datasets

| S-EPMC5355484 | biostudies-literature
| S-EPMC6345779 | biostudies-literature
| S-EPMC4624343 | biostudies-literature
| S-EPMC10949895 | biostudies-literature
| S-EPMC5155214 | biostudies-literature
| S-EPMC5543781 | biostudies-literature
| S-EPMC4271467 | biostudies-literature
| S-EPMC1382306 | biostudies-literature
| S-EPMC6491925 | biostudies-literature
| S-EPMC4617137 | biostudies-literature