Residual body removal during spermatogenesis in C. elegans requires genes that mediate cell corpse clearance.
Ontology highlight
ABSTRACT: Generation of spermatozoa involves segregation of most of the cytoplasm into residual bodies, which are detached from spermatids and eliminated in mammals. However, the molecular and cellular mechanism underlying the removal of residual bodies remains largely unknown. Here, we demonstrate that during C. elegans spermatogenesis residual bodies are engulfed and degraded by gonadal sheath cells, a process that uses the same set of genes underlying apoptotic cell removal. The two partially redundant engulfment pathways that clear cell corpses also mediate phagocytosis of residual bodies, possibly by recognizing the 'eat me' signal phosphatidylserine exposed on the surface. The residual body-containing phagosome undergoes a maturation process involving sequential steps including dynamic coating with PtdIns(3)P and association of RAB small GTPases. The genetic hierarchy of residual body removal in hermaphrodites is similar to that of cell corpse clearance, but male residual body removal involves a distinct hierarchy, with differential use of the engulfment genes. Efficient removal of residual bodies regulates the number of spermatids and effective transfer of spermatids during male matings. Our results indicate that a similar molecular mechanism is employed for the removal of residual bodies and apoptotic cell corpses in C. elegans.
SUBMITTER: Huang J
PROVIDER: S-EPMC3509724 | biostudies-literature | 2012 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA