Unknown

Dataset Information

0

Synthesis of ZnO nanostructures for low temperature CO and UV sensing.


ABSTRACT: In this paper, synthesis and results of the low temperature sensing of carbon monoxide (CO) gas and room temperature UV sensors using one dimensional (1-D) ZnO nanostructures are presented. Comb-like structures, belts and rods, and needle-shaped nanobelts were synthesized by varying synthesis temperature using a vapor transport method. Needle-like ZnO nanobelts are unique as, according to our knowledge, there is no evidence of such morphology in previous literature. The structural, morphological and optical characterization was carried out using X-ray diffraction, scanning electron microscopy and diffused reflectance spectroscopy techniques. It was observed that the sensing response of comb-like structures for UV light was greater as compared to the other grown structures. Comb-like structure based gas sensors successfully detect CO at 75 °C while other structures did not show any response.

SUBMITTER: Amin M 

PROVIDER: S-EPMC3545595 | biostudies-literature | 2012 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Synthesis of ZnO nanostructures for low temperature CO and UV sensing.

Amin Muhammad M   Manzoor Umair U   Islam Mohammad M   Bhatti Arshad Saleem AS   Shah Nazar Abbas NA  

Sensors (Basel, Switzerland) 20121016 10


In this paper, synthesis and results of the low temperature sensing of carbon monoxide (CO) gas and room temperature UV sensors using one dimensional (1-D) ZnO nanostructures are presented. Comb-like structures, belts and rods, and needle-shaped nanobelts were synthesized by varying synthesis temperature using a vapor transport method. Needle-like ZnO nanobelts are unique as, according to our knowledge, there is no evidence of such morphology in previous literature. The structural, morphological  ...[more]

Similar Datasets

| S-EPMC6647949 | biostudies-literature
| S-EPMC4175732 | biostudies-literature
| S-EPMC5769078 | biostudies-literature
| S-EPMC5054382 | biostudies-other
| S-EPMC5519692 | biostudies-other
| S-EPMC9417844 | biostudies-literature
| S-EPMC3500587 | biostudies-literature
| S-EPMC5795609 | biostudies-literature
| S-EPMC4360626 | biostudies-other
| S-EPMC5357312 | biostudies-literature