Unknown

Dataset Information

0

Synthesis, enantioresolution, and activity profile of chiral 6-methyl-2,4-disubstituted pyridazin-3(2H)-ones as potent N-formyl peptide receptor agonists.


ABSTRACT: A series of chiral pyridazin-3(2H)-ones was synthesized, separated as pure enantiomers, and evaluated for N-formyl peptide receptor (FPR) agonist activity. Characterization of the purified enantiomers using combined chiral HPLC and chiroptical studies (circular dichroism, allowed unambiguous assignment of the absolute configuration for each pair of enantiomers). Evaluation of the ability of racemic mixtures and purified enantiomers to stimulate intracellular Ca(2+) flux in FPR-transfected HL-60 cells and human neutrophils and to induce ?-arrestin recruitment in FPR-transfected CHO-K1 cells showed that many enantiomers were potent agonists, inducing responses in the sub-micromolar to nanomolar range. Furthermore, FPRs exhibited enantiomer selectivity, generally preferring the R-(-)-forms over the S-(+)-enantiomers. Finally, we found that elongation of the carbon chain in the chiral center of the active compounds generally increased biological activity. Thus, these studies provide important new information regarding molecular features involved in FPR ligand preference and report the identification of a novel series of FPR agonists.

SUBMITTER: Cilibrizzi A 

PROVIDER: S-EPMC3565387 | biostudies-literature | 2012 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Synthesis, enantioresolution, and activity profile of chiral 6-methyl-2,4-disubstituted pyridazin-3(2H)-ones as potent N-formyl peptide receptor agonists.

Cilibrizzi Agostino A   Schepetkin Igor A IA   Bartolucci Gianluca G   Crocetti Letizia L   Dal Piaz Vittorio V   Giovannoni Maria Paola MP   Graziano Alessia A   Kirpotina Liliya N LN   Quinn Mark T MT   Vergelli Claudia C  

Bioorganic & medicinal chemistry 20120427 12


A series of chiral pyridazin-3(2H)-ones was synthesized, separated as pure enantiomers, and evaluated for N-formyl peptide receptor (FPR) agonist activity. Characterization of the purified enantiomers using combined chiral HPLC and chiroptical studies (circular dichroism, allowed unambiguous assignment of the absolute configuration for each pair of enantiomers). Evaluation of the ability of racemic mixtures and purified enantiomers to stimulate intracellular Ca(2+) flux in FPR-transfected HL-60  ...[more]

Similar Datasets

| S-EPMC2888720 | biostudies-literature
| S-EPMC3711119 | biostudies-literature
| S-EPMC2971970 | biostudies-literature
| S-EPMC3151939 | biostudies-literature
| S-EPMC3011476 | biostudies-literature
| S-EPMC3120547 | biostudies-literature
| S-EPMC3011493 | biostudies-literature
| S-EPMC2961053 | biostudies-literature
| S-EPMC3379247 | biostudies-literature
| S-EPMC2972068 | biostudies-literature