Blood-brain barrier permeability abnormalities in vascular cognitive impairment.
Ontology highlight
ABSTRACT: Disruption of the blood-brain barrier has been proposed to be important in vascular cognitive impairment. Increased cerebrospinal fluid albumin and contrast-enhanced MRI provide supporting evidence, but quantification of the blood-brain barrier permeability in patients with vascular cognitive impairment is lacking. Therefore, we acquired dynamic contrast-enhanced MRI to quantify blood-brain barrier permeability in vascular cognitive impairment. Method- We studied 60 patients with suspected vascular cognitive impairment. They had neurological and neuropsychological testing, permeability measurements with dynamic contrast-enhanced MRI, and lumbar puncture to measure albumin index. Patients were separated clinically into subcortical ischemic vascular disease (SIVD), multiple and lacunar infarcts, and leukoaraiosis. Twenty volunteers were controls for the dynamic contrast-enhanced MRI studies, and control cerebrospinal fluid was obtained from 20 individuals undergoing spinal anesthesia for nonneurological problems.Thirty-six patients were classified as SIVD, 8 as multiple and lacunar infarcts, and 9 as leukoaraiosis. The albumin index was significantly increased in the SIVD group compared with 20 control subjects. Permeabilities for the patients with vascular cognitive impairment measured by dynamic contrast-enhanced MRI were significantly increased over control subjects (P<0.05). Patient age did not correlate with either the blood-brain barrier permeability or albumin index. Highest albumin index values were seen in the SIVD group (P<0.05) and were significantly increased over multiple and lacunar infarcts. K(i) values were elevated over control subjects in SIVD but were similar to multiple and lacunar infarcts.There was abnormal permeability in white matter in patients with SIVD as shown by dynamic contrast-enhanced MRI and albumin index. Future studies will be needed to determine the relationship of blood-brain barrier damage and development of white matter hyperintensities.
SUBMITTER: Taheri S
PROVIDER: S-EPMC3584170 | biostudies-literature | 2011 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA