Project description:Herein we report a highly efficient and site-selective palladium-catalyzed oxidative carbocyclization-arylation reaction of bisallenes and arylboronic acids under operationally simple conditions for the selective synthesis of cyclohexadiene derivatives. The palladium source and the solvent proved to be crucial for the selectivity and the reactivity displayed. Interestingly, in the absence of the nucleophile, an oxidative carbocyclization-β-elimination pathway predominates. The reaction conditions are compatible with a wide range of functional groups, and the reaction exhibits broad substrate scope. Furthermore, key information regarding the mechanism was obtained using control experiments and kinetic studies.
Project description:A highly efficient palladium-catalyzed oxidative borylation of enallenes was developed for the selective formation of cyclobutene derivatives and fully-substituted alkenylboron compounds. Cyclobutenes are formed as the exclusive products in MeOH in the presence of H2 O and Et3 N, whereas the use of AcOH leads to alkenylboron compounds. Both reactions showed a broad substrate scope and good tolerance for various functional groups, including carboxylic acid ester, free hydroxy, imide, and alkyl groups. Furthermore, transformations of the borylated products were conducted to show their potential applications.
Project description:Transmetallation: A highly regio- and diastereoselective carbocyclization involving a palladium-catalyzed 1,2-addition of two carbon atoms across a conjugated diene has been developed (see scheme). The reaction is performed with dienynes and an oxygen tether containing a terminal or internal triple bond.
Project description:The use of molecular oxygen in palladium-catalyzed oxidation reactions is highly widespread in organic chemistry. However, the direct reoxidation of palladium by O2 is often kinetically unfavored, thus leading the deactivation of the palladium catalyst during the catalytic cycle. In the present work, we report a highly selective palladium-catalyzed carbocyclization of bisallenes to seven-membered heterocycles under atmospheric pressure of O2 . The use of a homogenous hybrid catalyst (Co(salophen)-HQ, HQ=hydroquinone) significantly promotes efficient electron transfer between the palladium catalyst and O2 through a low-energy pathway. This aerobic oxidative transformation shows broad substrate scope and functional group compatibility and allowed the preparation of O-containing seven-membered rings in good yields in most cases.
Project description:An enantioselective oxidative carbocyclization-borylation of enallenes that is catalyzed by palladium(II) and a Brønsted acid was developed. Biphenol-type chiral phosphoric acids were superior co-catalysts for inducing the enantioselective cyclization. A number of chiral borylated carbocycles were synthesized in high enantiomeric excess.
Project description:Herein we report an example of tandem oxidative acetoxylation/carbocyclization of arylallenes 1 using Pd(OAc)2. The catalytic protocol is highly selective and provides access to new C-C and C-O bonds leading to a carbocyclization. The reaction proceeds via C-H activation by Pd. Mechanistic investigations show that the C-H activation is not the rate-limiting step and indicate that the reaction proceeds via acetoxylation of the allene.
Project description:Herein, we communicate a selective and efficient protocol for oxidative arylating carbocyclization of enallenynes using O2 as the oxidant. The key to success for this aerobic transformation is the application of a specific electron transfer mediator (ETM), a bifunctional catalyst consisting of a metal-macrocycle and quinone moieties. This catalyst significantly facilitates the reoxidation of Pd0 to PdII under atmospheric pressure of O2 . Diverse functionalized enallenynes react with aryl boronic acids to afford the corresponding cyclic tetraenes in moderate to good yields.
Project description:A highly selective cascade reaction that allows the direct transformation of dienallenes to spirocyclobutenes (spiro[3.4]octenes) as single diastereoisomers has been developed. The reaction involves formation of overall four C-C bonds and proceeds via a palladium-catalyzed oxidative transformation with insertion of olefin, olefin, and carbon monoxide. Under slightly different reaction conditions, an additional CO insertion takes place to give spiro[4.4]nonenes with formation of overall five C-C bonds.