Natural prenylated resveratrol analogs arachidin-1 and -3 demonstrate improved glucuronidation profiles and have affinity for cannabinoid receptors.
Ontology highlight
ABSTRACT: The therapeutic promise of trans-resveratrol (tRes) is limited by poor bioavailability following rapid metabolism. We hypothesise that trans-arachidin-1 (tA1) and trans-arachidin-3 (tA3), peanut hairy root-derived isoprenylated analogs of tRes, will exhibit slower metabolism/enhanced bioavailability and retain biological activity via cannabinoid receptor (CBR) binding relative to their non-prenylated parent compounds trans-piceatannol (tPice) and tRes, respectively.The activities of eight human UDP-glucuronosyltransferases (UGTs) toward these compounds were evaluated. The greatest activity was observed for extrahepatic UGTs 1A10 and 1A7, followed by hepatic UGTs 1A1 and 1A9. Importantly, an additional isoprenyl and/or hydroxyl group in tA1 and tA3 slowed overall glucuronidation. CBR binding studies demonstrated that all analogs bound to CB1Rs with similar affinities (5-18 µM); however, only tA1 and tA3 bound appreciably to CB2Rs. Molecular modelling studies confirmed that the isoprenyl moiety of tA1 and tA3 improved binding affinity to CB2Rs. Finally, although tA3 acted as a competitive CB1R antagonist, tA1 antagonised CB1R agonists by both competitive and non-competitive mechanisms.Prenylated stilbenoids may be preferable alternatives to tRes due to increased bioavailability via slowed metabolism. Similar structural analogs might be developed as novel CB therapeutics for obesity and/or drug dependency.
SUBMITTER: Brents LK
PROVIDER: S-EPMC3608422 | biostudies-literature | 2012 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA