Unknown

Dataset Information

0

In vivo tumor-targeted fluorescence imaging using near-infrared non-cadmium quantum dots.


ABSTRACT: This article reported the high tumor targeting efficacy of RGD peptide labeled near-infrared (NIR) non-cadmium quantum dots (QDs). After using poly(ethylene glycol) to encapsulate InAs/InP/ZnSe QDs (emission maximum at about 800 nm), QD800-PEG dispersed well in PBS buffer with the hydrodynamic diameter (HD) of 15.9 nm and the circulation half-life of approximately 29 min. After coupling QD800-PEG with arginine-glycine-aspartic acid (RGD) or arginine-alanine-aspartic acid (RAD) peptides, we used nude mice bearing subcutaneous U87MG tumor as models to test tumor-targeted fluorescence imaging. The results indicated that the tumor uptake of QD800-RGD is much higher than those of QD800-PEG and QD800-RAD. The semiquantitative analysis of the region of interest (ROI) showed a high tumor uptake of 10.7 +/- 1.5%ID/g in mice injected with QD800-RGD, while the tumor uptakes of QD800-PEG and QD800-RAD were 2.9 +/- 0.3%ID/g and 4.0 +/- 0.5%ID/g, respectively, indicating the specific tumor targeting of QD800-RGD. The high reproducibility of bioconjunction between QDs and the RGD peptide and the feasibility of QD-RGD bioconjugates as tumor-targeted fluorescence probes warrant the successful application of QDs for in vivo molecular imaging.

SUBMITTER: Gao J 

PROVIDER: S-EPMC3617504 | biostudies-literature | 2010 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

In vivo tumor-targeted fluorescence imaging using near-infrared non-cadmium quantum dots.

Gao Jinhao J   Chen Kai K   Xie Renguo R   Xie Jin J   Yan Yongjun Y   Cheng Zhen Z   Peng Xiaogang X   Chen Xiaoyuan X  

Bioconjugate chemistry 20100401 4


This article reported the high tumor targeting efficacy of RGD peptide labeled near-infrared (NIR) non-cadmium quantum dots (QDs). After using poly(ethylene glycol) to encapsulate InAs/InP/ZnSe QDs (emission maximum at about 800 nm), QD800-PEG dispersed well in PBS buffer with the hydrodynamic diameter (HD) of 15.9 nm and the circulation half-life of approximately 29 min. After coupling QD800-PEG with arginine-glycine-aspartic acid (RGD) or arginine-alanine-aspartic acid (RAD) peptides, we used  ...[more]

Similar Datasets

| S-EPMC2860770 | biostudies-literature
| S-EPMC5834876 | biostudies-literature
| S-EPMC4948596 | biostudies-literature
| S-EPMC5359086 | biostudies-literature
| S-EPMC3090730 | biostudies-literature
| S-EPMC4869608 | biostudies-literature
| S-EPMC4310643 | biostudies-literature
| S-EPMC6402406 | biostudies-literature
| S-EPMC2862004 | biostudies-literature
| S-EPMC8243857 | biostudies-literature