Unknown

Dataset Information

0

Critical role of the central 139-loop in stability and binding selectivity of arrestin-1.


ABSTRACT: Arrestin-1 selectively binds active phosphorylated rhodopsin (P-Rh*), demonstrating much lower affinity for inactive phosphorylated (P-Rh) and unphosphorylated active (Rh*) forms. Receptor interaction induces significant conformational changes in arrestin-1, which include large movement of the previously neglected 139-loop in the center of the receptor binding surface, away from the incoming receptor. To elucidate the functional role of this loop, in mouse arrestin-1 we introduced deletions of variable lengths and made several substitutions of Lys-142 in it and Asp-72 in the adjacent loop. Several mutants with perturbations in the 139-loop demonstrate increased binding to P-Rh*, dark P-Rh, Rh*, and phospho-opsin. Enhanced binding of arrestin-1 mutants to non-preferred forms of rhodopsin correlates with decreased thermal stability. The 139-loop perturbations increase P-Rh* binding of arrestin-1 at low temperatures and further change its binding profile on the background of 3A mutant, where the C-tail is detached from the body of the molecule by triple alanine substitution. Thus, the 139-loop stabilizes basal conformation of arrestin-1 and acts as a brake, preventing its binding to non-preferred forms of rhodopsin. Conservation of this loop in other subtypes suggests that it has the same function in all members of the arrestin family.

SUBMITTER: Vishnivetskiy SA 

PROVIDER: S-EPMC3636863 | biostudies-literature | 2013 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Critical role of the central 139-loop in stability and binding selectivity of arrestin-1.

Vishnivetskiy Sergey A SA   Baameur Faiza F   Findley Kristen R KR   Gurevich Vsevolod V VV  

The Journal of biological chemistry 20130308 17


Arrestin-1 selectively binds active phosphorylated rhodopsin (P-Rh*), demonstrating much lower affinity for inactive phosphorylated (P-Rh) and unphosphorylated active (Rh*) forms. Receptor interaction induces significant conformational changes in arrestin-1, which include large movement of the previously neglected 139-loop in the center of the receptor binding surface, away from the incoming receptor. To elucidate the functional role of this loop, in mouse arrestin-1 we introduced deletions of v  ...[more]

Similar Datasets

| S-EPMC6420155 | biostudies-literature
| S-EPMC2760802 | biostudies-other
| S-EPMC2766643 | biostudies-literature
| S-EPMC5112034 | biostudies-literature
| S-EPMC7674454 | biostudies-literature
| S-EPMC2787876 | biostudies-literature
| S-EPMC2819988 | biostudies-literature
| S-EPMC6571788 | biostudies-literature
| S-EPMC2890756 | biostudies-literature
| S-EPMC6346133 | biostudies-literature