Project description:Blastic plasmacytoid dendritic cell neoplasm is an aggressive hematologic malignancy with a poor prognosis. No consensus regarding optimal treatment modalities is currently available. Targeting the nuclear factor-kappa B pathway is considered a promising approach since blastic plasmacytoid dendritic cell neoplasm has been reported to exhibit constitutive activation of this pathway. Moreover, nuclear factor-kappa B inhibition in blastic plasmacytoid dendritic cell neoplasm cell lines, achieved using either an experimental specific inhibitor JSH23 or the clinical drug bortezomib, interferes in vitro with leukemic cell proliferation and survival. Here we extended these data by showing that primary blastic plasmacytoid dendritic cell neoplasm cells from seven patients were sensitive to bortezomib-induced cell death. We confirmed that bortezomib efficiently inhibits the phosphorylation of the RelA nuclear factor-kappa B subunit in blastic plasmacytoid dendritic cell neoplasm cell lines and primary cells from patients in vitro and in vivo in a mouse model. We then demonstrated that bortezomib can be associated with other drugs used in different chemotherapy regimens to improve its impact on leukemic cell death. Indeed, when primary blastic plasmacytoid dendritic cell neoplasm cells from a patient were grafted into mice, bortezomib treatment significantly increased the animals' survival, and was associated with a significant decrease of circulating leukemic cells and RelA nuclear factor-kappa B subunit expression. Overall, our results provide a rationale for the use of bortezomib in combination with other chemotherapy for the treatment of patients with blastic plasmacytoid dendritic cell neoplasm. Based on our data, a prospective clinical trial combining proteasome inhibitor with classical drugs could be envisaged.
Project description:Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive haematological malignancy in the elderly, with a high frequency of cutaneous and bone marrow involvement and poor prognosis. We report a case of BPDCN with classic presentation and discuss its treatment and the value of different investigation tools used in diagnosis and response assessment.
Project description:Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare CD4+ CD56+ myeloid malignancy that is challenging to diagnose and treat. BPDCN typically presents with nonspecific cutaneous lesions with or without extra-cutaneous manifestations before progressing to leukemia. Currently, there is no standard of care for the treatment of BPDCN and various approaches have been used including acute myeloid leukemia, acute lymphoblastic leukemia, and lymphoma-based regimens with or without stem cell transplantation. Despite these treatment approaches, the prognosis of BPDCN remains poor and there is a lack of prospective data upon which to base treatment decisions. Recent work examining the mutational landscape and gene expression profiles of BPDCN has identified a number of potential therapeutic targets. One such target is CD123, the α subunit of the human interleukin-3 receptor, which is the subject of intervention studies using the novel agent SL-401. Other investigational therapies include UCART123, T-cell immunotherapy, and venetoclax. Prospective trials are needed to determine the best treatment for this uncommon and aggressive neoplasm.
Project description:Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a hematologic malignancy believed to originate from plasmacytoid dendritic cells (pDCs), the immune cells responsible for producing type 1 interferons during infection. Nearly all patients with BPDCN have prominent skin involvement, with cutaneous infiltration occupying the dermis and subcutis. One half of patients present with BPDCN cells only in the skin, with no evidence of disease elsewhere. Because normal pDCs are rare or absent in cutaneous sites, and they only traffic to the skin after activation by pathogen or inflammation, our aim was to determine if a microorganism is associated with BPDCN. We performed RNA sequencing in BPDCN skin and bone marrow, with cutaneous T-cell lymphoma (CTCL) and normal skin as controls. GATK-PathSeq was used to identify known microbial sequences. Bacterial reads in BPDCN skin were components of normal flora and did not distinguish BPDCN from controls. We then developed a new computational tool, virID (Viral Identification and Discovery; https://github.com/jnoms/virID), for identification of microbial-associated reads remaining unassigned after GATK-PathSeq. We found no evidence for a known or novel virus in BPDCN skin or bone marrow, despite confirming that virID could identify Merkel cell polyomavirus in Merkel cell carcinoma, human papillomavirus in head and neck squamous cell carcinoma, and Kaposi's sarcoma herpesvirus in Kaposi's sarcoma in a blinded fashion. Thus, at the level of sensitivity used here, we found no clear pathogen linked to BPDCN.
Project description:Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy with dismal clinical outcomes. Conventional chemotherapies such cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) and hyperfractionated cyclophosphamide, vincristine, doxorubicin, dexamethasone alternating with high-dose cytarabine and methotrexate (CVAD) have been commonly used for the BPDCN treatment until a recent study showed promising outcomes in patients treated with SL-401 (Tagraxofusp). In this single-institution retrospective study, we identified a total of 49 consecutive BPDCN patients. Among 42 patients who received treatment, hyper-CVAD regimen was associated with higher complete response rate compared with CHOP-based regimens or SL-401 (91% vs 50% vs 50%), although the difference did not achieve statistical significance. Furthermore, there was no significant overall survival (OS) difference between patients treated with SL-401 vs other chemotherapies as their first-line treatment (hazard ratio = 1.597; 95% CI, 0.460-5.548; P = .431). Of note, patients who received allogeneic stem cell transplant (allo-SCT) had significantly longer OS (hazard ratio = 0.160; 95% CI, 0.0453-0.56; P = .041). Extent of disease (skin vs bone marrow vs both) or younger age (<60 years old) did not have significant prognostic impact on OS. Collectively, our study confirmed the survival benefit of allo-SCT and suggests that conventional and intensive chemotherapies such as CHOP and hyper-CVAD as well as SL-401 would be comparable first-line choice for the BPDCN patients.
Project description:Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and clinically challenging hematologic malignancy with dismal outcomes. With a median age of ?70 years, the majority of patients with BPDCN have experienced historically suboptimal responses with intensive chemotherapy regimens. The major scientific breakthrough in this field was the recognition of overexpression of a surface receptor, CD123/interleukin 3 (IL-3) receptor ?, in all patients. Importantly, a novel therapeutic agent consisting of a truncated diphtheria toxin (DT) payload fused to recombinant human IL-3 was being developed, one that targeted CD123, initially known as DT-IL-3 (later known as SL401; tagraxofusp; tagraxofusp-erzs [Elzonris]). The identification of this agent, and subsequent clinical trials specifically dedicated to patients with BPDCN (including a pilot study, followed by a larger phase 1/2 multicenter study [90% overall response rate [ORR] in frontline and 67% ORR in relapsed/refractory setting]), in part led to approval of tagraxofusp-erzs on 21 December 2018. Tagraxofusp-erzs was the first agent approved for BPDCN (for patients ages 2 years and older), and importantly, established this drug as the first CD123-targeted agent ever approved. The most notable toxicity of tagraxofusp-erzs is occurrence of the capillary leak syndrome, which occurs frequently at all grades, and has also been observed to be life-threatening, appropriately leading to a US Food and Drug Administration "black box" warning in the package insert. The preclinical and clinical aspects of drug development of tagraxofusp-erzs as monotherapy leading to drug approval are reviewed herein, with discussion of future directions of this novel agent, including consideration for rational combinations in BPDCN and beyond.
Project description:Patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN) have poor outcomes despite intensive chemotherapy, underscoring the need for novel therapeutic approaches. The expression status of PD1/PD-L1 in BPDCN remains unknown. We evaluated PD1/PD-L1 by immunohistochemistry and RNAseq expression profiling in a cohort of BPDCN patients. The study group included 28 patients with a median age of 66.8 years (range, 22.8-86.7), 22 men and 6 women. PD-L1 expression was detected by immunohistochemistry in 10/21 (47.6%) cases. PD-L1 expression had a median H-score of 157. The H-score was ≥60 in 7 patients. PD-L1 protein levels (H-score) were proportional to normalized PD-L1 mRNA transcript levels (CD274 mRNA). In addition, high-level PD-L1 expression correlated with higher numbers of PD1-positive cells within BPDCN tumors. There was no correlation between clinicopathologic characteristics and PD-L1 expression status. Similarly, there was no significant difference in overall survival between patients with PD-L1-positive and PD-L1-negative BPDCN (median 12 vs. 23 month, respectively; p = 0.743). In conclusion, PD-L1 expression by tumor cells is detectable in a sizeable subset of patients with BPDCN, suggesting that exploration of the effectiveness of therapeutic inhibition of the PD1/PD-L1 axis in patients with refractory or progressive BPDCN is warranted.
Project description:Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a clinically aggressive hematologic malignancy derived from precursors of dendritic cells and involves most frequently the skin, bone marrow and lymph nodes. Diagnosis depends upon identification of specific tumor markers including CD4, CD56 and CD123. Historically, the median survival has been less than 2?years in most reported series. While for many years, conventional chemotherapy followed by stem cell transplantation was the standard of care, recently tagraxofusp, a cytotoxin directed against CD123, received United States Food and Drug Administration approval specifically for patients with BPDCN. In this review, we will discuss the markers used for diagnosis of BPDCN and focus on the new targeted treatments available. Specifically in BPDCN, tagraxofusp was highly effective with a safety profile found to be acceptable overall, with the noted occurrence of capillary leak syndrome. Future directions in therapy approaches for patients with BPDCN will include the development of other CD123-targeted agents, agents targeting beyond CD123 and investigation of rational combination approaches of CD123-directed therapy with other therapies.