Unknown

Dataset Information

0

Interrogating differences in expression of targeted gene sets to predict breast cancer outcome.


ABSTRACT:

Background

Genomics provides opportunities to develop precise tests for diagnostics, therapy selection and monitoring. From analyses of our studies and those of published results, 32 candidate genes were identified, whose expression appears related to clinical outcome of breast cancer. Expression of these genes was validated by qPCR and correlated with clinical follow-up to identify a gene subset for development of a prognostic test.

Methods

RNA was isolated from 225 frozen invasive ductal carcinomas,and qRT-PCR was performed. Univariate hazard ratios and 95% confidence intervals for breast cancer mortality and recurrence were calculated for each of the 32 candidate genes. A multivariable gene expression model for predicting each outcome was determined using the LASSO, with 1000 splits of the data into training and testing sets to determine predictive accuracy based on the C-index. Models with gene expression data were compared to models with standard clinical covariates and models with both gene expression and clinical covariates.

Results

Univariate analyses revealed over-expression of RABEP1, PGR, NAT1, PTP4A2, SLC39A6, ESR1, EVL, TBC1D9, FUT8, and SCUBE2 were all associated with reduced time to disease-related mortality (HR between 0.8 and 0.91, adjusted p < 0.05), while RABEP1, PGR, SLC39A6, and FUT8 were also associated with reduced recurrence times. Multivariable analyses using the LASSO revealed PGR, ESR1, NAT1, GABRP, TBC1D9, SLC39A6, and LRBA to be the most important predictors for both disease mortality and recurrence. Median C-indexes on test data sets for the gene expression, clinical, and combined models were 0.65, 0.63, and 0.65 for disease mortality and 0.64, 0.63, and 0.66 for disease recurrence, respectively.

Conclusions

Molecular signatures consisting of five genes (PGR, GABRP, TBC1D9, SLC39A6 and LRBA) for disease mortality and of six genes (PGR, ESR1, GABRP, TBC1D9, SLC39A6 and LRBA) for disease recurrence were identified. These signatures were as effective as standard clinical parameters in predicting recurrence/mortality, and when combined, offered some improvement relative to clinical information alone for disease recurrence (median difference in C-values of 0.03, 95% CI of -0.08 to 0.13). Collectively, results suggest that these genes form the basis for a clinical laboratory test to predict clinical outcome of breast cancer.

SUBMITTER: Andres SA 

PROVIDER: S-EPMC3707751 | biostudies-literature | 2013 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Interrogating differences in expression of targeted gene sets to predict breast cancer outcome.

Andres Sarah A SA   Brock Guy N GN   Wittliff James L JL  

BMC cancer 20130702


<h4>Background</h4>Genomics provides opportunities to develop precise tests for diagnostics, therapy selection and monitoring. From analyses of our studies and those of published results, 32 candidate genes were identified, whose expression appears related to clinical outcome of breast cancer. Expression of these genes was validated by qPCR and correlated with clinical follow-up to identify a gene subset for development of a prognostic test.<h4>Methods</h4>RNA was isolated from 225 frozen invasi  ...[more]

Similar Datasets

| S-EPMC3929072 | biostudies-literature
| S-EPMC2711113 | biostudies-literature
| S-EPMC1855059 | biostudies-literature
| S-EPMC3061871 | biostudies-literature
| S-EPMC3546921 | biostudies-literature
2021-12-19 | PXD028335 | Pride
| S-EPMC3446385 | biostudies-literature
| S-EPMC3197658 | biostudies-literature
2022-02-15 | PXD028251 | Pride
2018-12-14 | GSE123833 | GEO