Rare-earth-doped biological composites as in vivo shortwave infrared reporters.
Ontology highlight
ABSTRACT: The extension of in vivo optical imaging for disease screening and image-guided surgical interventions requires brightly emitting, tissue-specific materials that optically transmit through living tissue and can be imaged with portable systems that display data in real-time. Recent work suggests that a new window across the short-wavelength infrared region can improve in vivo imaging sensitivity over near infrared light. Here we report on the first evidence of multispectral, real-time short-wavelength infrared imaging offering anatomical resolution using brightly emitting rare-earth nanomaterials and demonstrate their applicability toward disease-targeted imaging. Inorganic-protein nanocomposites of rare-earth nanomaterials with human serum albumin facilitated systemic biodistribution of the rare-earth nanomaterials resulting in the increased accumulation and retention in tumour tissue that was visualized by the localized enhancement of infrared signal intensity. Our findings lay the groundwork for a new generation of versatile, biomedical nanomaterials that can advance disease monitoring based on a pioneering infrared imaging technique.
SUBMITTER: Naczynski DJ
PROVIDER: S-EPMC3736359 | biostudies-literature | 2013
REPOSITORIES: biostudies-literature
ACCESS DATA