Mechanisms of beat-to-beat regulation of cardiac pacemaker cell function by Ca²? cycling dynamics.
Ontology highlight
ABSTRACT: Whether intracellular Ca(2+) cycling dynamics regulate cardiac pacemaker cell function on a beat-to-beat basis remains unknown. Here we show that under physiological conditions, application of low concentrations of caffeine (2-4 mM) to isolated single rabbit sinoatrial node cells acutely reduces their spontaneous action potential cycle length (CL) and increases Ca(2+) transient amplitude for several cycles. Numerical simulations, using a modified Maltsev-Lakatta coupled-clock model, faithfully reproduced these effects, and also the effects of CL prolongation and dysrhythmic spontaneous beating (produced by cytosolic Ca(2+) buffering) and an acute CL reduction (produced by flash-induced Ca(2+) release from a caged Ca(2+) buffer), which we had reported previously. Three contemporary numerical models (including the original Maltsev-Lakatta model) failed to reproduce the experimental results. In our proposed new model, Ca(2+) releases acutely change the CL via activation of the Na(+)/Ca(2+) exchanger current. Time-dependent CL reductions after flash-induced Ca(2+) releases (the memory effect) are linked to changes in Ca(2+) available for pumping into sarcoplasmic reticulum which, in turn, changes the sarcoplasmic reticulum Ca(2+) load, diastolic Ca(2+) releases, and Na(+)/Ca(2+) exchanger current. These results support the idea that Ca(2+) regulates CL in cardiac pacemaker cells on a beat-to-beat basis, and suggest a more realistic numerical mechanism of this regulation.
SUBMITTER: Yaniv Y
PROVIDER: S-EPMC3791306 | biostudies-literature | 2013 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA