Unknown

Dataset Information

0

In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency.


ABSTRACT: The design of effective cell replacement therapies requires detailed knowledge of how embryonic stem cells form primary tissues, such as mesoderm or neurectoderm that later become skeletal muscle or nervous system. Members of the T-box transcription factor family are key in the formation of these primary tissues, but their underlying molecular activities are poorly understood. Here, we define in vivo genome-wide regulatory inputs of the T-box proteins Brachyury, Eomesodermin, and VegT, which together maintain neuromesodermal stem cells and determine their bipotential fates in frog embryos. These T-box proteins are all recruited to the same genomic recognition sites, from where they activate genes involved in stem cell maintenance and mesoderm formation while repressing neurogenic genes. Consequently, their loss causes embryos to form an oversized neural tube with no mesodermal derivatives. This collaboration between T-box family members thus ensures the continuous formation of correctly proportioned neural and mesodermal tissues in vertebrate embryos during axial elongation.

SUBMITTER: Gentsch GE 

PROVIDER: S-EPMC3791401 | biostudies-literature | 2013 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency.

Gentsch George E GE   Owens Nick D L ND   Martin Stephen R SR   Piccinelli Paul P   Faial Tiago T   Trotter Matthew W B MW   Gilchrist Michael J MJ   Smith James C JC  

Cell reports 20130919 6


The design of effective cell replacement therapies requires detailed knowledge of how embryonic stem cells form primary tissues, such as mesoderm or neurectoderm that later become skeletal muscle or nervous system. Members of the T-box transcription factor family are key in the formation of these primary tissues, but their underlying molecular activities are poorly understood. Here, we define in vivo genome-wide regulatory inputs of the T-box proteins Brachyury, Eomesodermin, and VegT, which tog  ...[more]

Similar Datasets

2013-09-19 | GSE48663 | GEO
2013-09-19 | GSE48560 | GEO
2013-09-19 | E-GEOD-48663 | biostudies-arrayexpress
2013-09-19 | E-GEOD-48560 | biostudies-arrayexpress
| S-EPMC4566282 | biostudies-literature
| S-EPMC5494305 | biostudies-literature
| S-EPMC6214962 | biostudies-literature
| S-EPMC5130236 | biostudies-literature
| S-EPMC2813862 | biostudies-literature
| S-EPMC5075069 | biostudies-literature