Unknown

Dataset Information

0

Supercapacitance from cellulose and carbon nanotube nanocomposite fibers.


ABSTRACT: Multiwalled carbon nanotube (MWNT)/cellulose composite nanofibers have been prepared by electrospinning a MWNT/cellulose acetate blend solution followed by deacetylation. These composite nanofibers were then used as precursors for carbon nanofibers (CNFs). The effect of nanotubes on the stabilization of the precursor and microstructure of the resultant CNFs were investigated using thermogravimetric analysis, transmission electron microscopy and Raman spectroscopy. It is demonstrated that the incorporated MWNTs reduce the activation energy of the oxidative stabilization of cellulose nanofibers from ?230 to ?180 kJ mol(-1). They also increase the crystallite size, structural order, and electrical conductivity of the activated CNFs (ACNFs). The surface area of the ACNFs increased upon addition of nanotubes which protrude from the fiber leading to a rougher surface. The ACNFs were used as the electrodes of a supercapacitor. The electrochemical capacitance of the ACNF derived from pure cellulose nanofibers is demonstrated to be 105 F g(-1) at a current density of 10 A g(-1), which increases to 145 F g(-1) upon the addition of 6% of MWNTs.

SUBMITTER: Deng L 

PROVIDER: S-EPMC3807724 | biostudies-literature | 2013 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Supercapacitance from cellulose and carbon nanotube nanocomposite fibers.

Deng Libo L   Young Robert J RJ   Kinloch Ian A IA   Abdelkader Amr M AM   Holmes Stuart M SM   De Haro-Del Rio David A DA   Eichhorn Stephen J SJ  

ACS applied materials & interfaces 20131011 20


Multiwalled carbon nanotube (MWNT)/cellulose composite nanofibers have been prepared by electrospinning a MWNT/cellulose acetate blend solution followed by deacetylation. These composite nanofibers were then used as precursors for carbon nanofibers (CNFs). The effect of nanotubes on the stabilization of the precursor and microstructure of the resultant CNFs were investigated using thermogravimetric analysis, transmission electron microscopy and Raman spectroscopy. It is demonstrated that the inc  ...[more]

Similar Datasets

| S-EPMC8708784 | biostudies-literature
| S-EPMC6681000 | biostudies-literature
| S-EPMC7608939 | biostudies-literature
| S-EPMC9275789 | biostudies-literature
| S-EPMC10155625 | biostudies-literature
| S-EPMC3163387 | biostudies-literature
| S-EPMC4443444 | biostudies-literature
| S-EPMC8912692 | biostudies-literature
| S-EPMC8471937 | biostudies-literature
| S-EPMC6858663 | biostudies-literature