Unknown

Dataset Information

0

Dual activators of protein kinase R (PKR) and protein kinase R-like kinase PERK identify common and divergent catalytic targets.


ABSTRACT: Chemical genetics has evolved into a powerful tool for studying gene function in normal and pathobiology. PKR and PERK, two eukaryotic translation initiation factor 2 alpha (eIF2?) kinases, play critical roles in the maintenance of cellular hemostasis, metabolic stability, and anti-viral defenses. Both kinases interact with and phosphorylate additional substrates including tumor suppressor p53 and nuclear protein 90. Loss of function of both kinases has been studied by reverse genetics and with recently identified inhibitors. In contrast, no activating probes for studying the catalytic activity of these kinases are available. We identified 3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-5,7-dihydroxy-4H-chromen-4-one (DHBDC) as a specific dual activator of PKR and PERK by screening a chemical library of 20?000 small molecules in a dual luciferase surrogate eIF2? phosphorylation assay. We present here extensive biological characterization and a preliminary structure-activity relationship of DHBDC, which phosphorylates eIF2? by activating PKR and PERK but no other eIF2? kinases. These agents also activate downstream effectors of eIF2? phosphorylation by inducing CEBP homologue protein, suppressing cyclin D1 expression, and inhibiting cancer cell proliferation, all in a manner dependent on PKR and PERK. Consistent with the role of eIF2? phosphorylation in viral infection, DHBDC inhibits the proliferation of human hepatitis C virus. Finally, DHBDC induces the phosphorylation of I?B? and activates the NF-?B pathway. Surprisingly, activation of the NF-?B pathway is dependent on PERK but independent of PKR activity. These data indicate that DHBDC is an invaluable probe for elucidating the role of PKR and PERK in normal and pathobiology.

SUBMITTER: Bai H 

PROVIDER: S-EPMC3808843 | biostudies-literature | 2013 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dual activators of protein kinase R (PKR) and protein kinase R-like kinase PERK identify common and divergent catalytic targets.

Bai Huijun H   Chen Ting T   Ming Jie J   Sun Hong H   Cao Peng P   Fusco Dahlene N DN   Chung Raymond T RT   Chorev Michael M   Jin Qi Q   Aktas Bertal H BH  

Chembiochem : a European journal of chemical biology 20130619 10


Chemical genetics has evolved into a powerful tool for studying gene function in normal and pathobiology. PKR and PERK, two eukaryotic translation initiation factor 2 alpha (eIF2α) kinases, play critical roles in the maintenance of cellular hemostasis, metabolic stability, and anti-viral defenses. Both kinases interact with and phosphorylate additional substrates including tumor suppressor p53 and nuclear protein 90. Loss of function of both kinases has been studied by reverse genetics and with  ...[more]

Similar Datasets

| S-EPMC10688375 | biostudies-literature
2008-06-15 | E-GEOD-682 | biostudies-arrayexpress
| S-EPMC2579349 | biostudies-literature
| S-EPMC307585 | biostudies-literature
| S-EPMC5404924 | biostudies-literature
| S-EPMC4715668 | biostudies-literature
| S-EPMC109106 | biostudies-literature
| S-EPMC3142916 | biostudies-literature
| S-EPMC3068933 | biostudies-literature
| S-EPMC2713438 | biostudies-literature