Unknown

Dataset Information

0

N-alkylated aminoacyl sulfamoyladenosines as potential inhibitors of aminoacylation reactions and microcin C analogues containing D-amino acids.


ABSTRACT: Microcin C analogues were recently envisaged as important compounds for the development of novel antibiotics. Two issues that may pose problems to these potential antibiotics are possible acquisition of resistance through acetylation and in vivo instability of the peptide chain. N-methylated aminoacyl sulfamoyladenosines were synthesized to investigate their potential as aminoacyl tRNA synthetase inhibitors and to establish whether these N-alkylated analogues would escape the natural inactivation mechanism via acetylation of the alpha amine. It was shown however, that these compounds are not able to effectively inhibit their respective aminoacyl tRNA synthetase. In addition, we showed that (D)-aspartyl-sulfamoyladenosine (i.e. with a (D)-configuration for the aspartyl moiety), is a potent inhibitor of aspartyl tRNA synthetase. However, we also showed that the inhibitory effect of (D)- aspartyl-sulfamoyladenosine is relatively short-lasting. Microcin C analogues with (D)-amino acids throughout from positions two to six proved inactive. They were shown to be resistant against metabolism by the different peptidases and therefore not able to release the active moiety. This observation could not be reversed by incorporation of (L)-amino acids at position six, showing that none of the available peptidases exhibit endopeptidase activity.

SUBMITTER: Vondenhoff GH 

PROVIDER: S-EPMC3817062 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

N-alkylated aminoacyl sulfamoyladenosines as potential inhibitors of aminoacylation reactions and microcin C analogues containing D-amino acids.

Vondenhoff Gaston H GH   Pugach Ksenia K   Gadakh Bharat B   Carlier Laurence L   Rozenski Jef J   Froeyen Mathy M   Severinov Konstantin K   Van Aerschot Arthur A  

PloS one 20131104 11


Microcin C analogues were recently envisaged as important compounds for the development of novel antibiotics. Two issues that may pose problems to these potential antibiotics are possible acquisition of resistance through acetylation and in vivo instability of the peptide chain. N-methylated aminoacyl sulfamoyladenosines were synthesized to investigate their potential as aminoacyl tRNA synthetase inhibitors and to establish whether these N-alkylated analogues would escape the natural inactivatio  ...[more]

Similar Datasets

| S-EPMC2732204 | biostudies-literature
| S-EPMC4384836 | biostudies-literature
| S-EPMC1450175 | biostudies-other
| S-EPMC7587597 | biostudies-literature
| S-EPMC2874332 | biostudies-literature
| S-EPMC6642615 | biostudies-literature
2024-10-17 | PXD053593 | Pride
| S-EPMC4822594 | biostudies-literature
| S-EPMC6963541 | biostudies-literature
| S-EPMC7915940 | biostudies-literature