Unknown

Dataset Information

0

Generation of nitric oxide gradients in microfluidic devices for cell culture using spatially controlled chemical reactions.


ABSTRACT: In this paper, we develop a microfluidic device capable of generating nitric oxide (NO) gradients for cell culture using spatially controlled chemical reactions. NO plays an essential role in various biological activities, including nervous, immune, and cardiovascular systems. The device developed in this paper can control NO gradients without utilizing expensive and hazardous high purity NO gas sources or direct addition of NO donors. Consequently, the device provides an efficient, cost-effective, robust, and stable platform to generate NO gradients for cell culture studies. In the experiments, NO gradients are first characterized using a NO-sensitive fluorescence dye, and cell experiments using aortic smooth muscle cells are conducted. The results demonstrate that the device can alter the intracellular NO concentrations and further affect the Ca(2+) concentration oscillation for the cells. The device developed in this paper provides a powerful platform for researchers better study the biological roles of NO and its spatial distribution using in vitro cell models with minimal instrumentation.

SUBMITTER: Chen YH 

PROVIDER: S-EPMC3838423 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

Generation of nitric oxide gradients in microfluidic devices for cell culture using spatially controlled chemical reactions.

Chen Ying-Hua YH   Peng Chien-Chung CC   Cheng Yung-Ju YJ   Wu Jin-Gen JG   Tung Yi-Chung YC  

Biomicrofluidics 20131107 6


In this paper, we develop a microfluidic device capable of generating nitric oxide (NO) gradients for cell culture using spatially controlled chemical reactions. NO plays an essential role in various biological activities, including nervous, immune, and cardiovascular systems. The device developed in this paper can control NO gradients without utilizing expensive and hazardous high purity NO gas sources or direct addition of NO donors. Consequently, the device provides an efficient, cost-effecti  ...[more]

Similar Datasets

| S-EPMC4362725 | biostudies-literature
| S-EPMC2859168 | biostudies-literature
| S-EPMC2790062 | biostudies-other
| S-EPMC7692389 | biostudies-literature
| S-EPMC3077828 | biostudies-literature
| S-EPMC4305448 | biostudies-literature
| S-EPMC5615110 | biostudies-literature
| S-EPMC2887752 | biostudies-literature
| S-EPMC2930779 | biostudies-literature
| S-EPMC3703920 | biostudies-literature