Unknown

Dataset Information

0

Genome-wide analysis of a Wnt1-regulated transcriptional network implicates neurodegenerative pathways.


ABSTRACT: Wnt proteins are critical to mammalian brain development and function. The canonical Wnt signaling pathway involves the stabilization and nuclear translocation of ?-catenin; however, Wnt also signals through alternative, noncanonical pathways. To gain a systems-level, genome-wide view of Wnt signaling, we analyzed Wnt1-stimulated changes in gene expression by transcriptional microarray analysis in cultured human neural progenitor (hNP) cells at multiple time points over a 72-hour time course. We observed a widespread oscillatory-like pattern of changes in gene expression, involving components of both the canonical and the noncanonical Wnt signaling pathways. A higher-order, systems-level analysis that combined independent component analysis, waveform analysis, and mutual information-based network construction revealed effects on pathways related to cell death and neurodegenerative disease. Wnt effectors were tightly clustered with presenilin1 (PSEN1) and granulin (GRN), which cause dominantly inherited forms of Alzheimer's disease and frontotemporal dementia (FTD), respectively. We further explored a potential link between Wnt1 and GRN and found that Wnt1 decreased GRN expression by hNPs. Conversely, GRN knockdown increased WNT1 expression, demonstrating that Wnt and GRN reciprocally regulate each other. Finally, we provided in vivo validation of the in vitro findings by analyzing gene expression data from individuals with FTD. These unbiased and genome-wide analyses provide evidence for a connection between Wnt signaling and the transcriptional regulation of neurodegenerative disease genes.

SUBMITTER: Wexler EM 

PROVIDER: S-EPMC3856943 | biostudies-literature | 2011 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genome-wide analysis of a Wnt1-regulated transcriptional network implicates neurodegenerative pathways.

Wexler Eric M EM   Rosen Ezra E   Lu Daning D   Osborn Gregory E GE   Martin Elizabeth E   Raybould Helen H   Geschwind Daniel H DH  

Science signaling 20111001 193


Wnt proteins are critical to mammalian brain development and function. The canonical Wnt signaling pathway involves the stabilization and nuclear translocation of β-catenin; however, Wnt also signals through alternative, noncanonical pathways. To gain a systems-level, genome-wide view of Wnt signaling, we analyzed Wnt1-stimulated changes in gene expression by transcriptional microarray analysis in cultured human neural progenitor (hNP) cells at multiple time points over a 72-hour time course. We  ...[more]

Similar Datasets

| S-EPMC5873870 | biostudies-literature
| S-EPMC4215868 | biostudies-literature
| S-EPMC2847590 | biostudies-literature
| S-EPMC2584783 | biostudies-literature
| S-EPMC2629396 | biostudies-literature
| S-EPMC7290791 | biostudies-literature
| S-EPMC6811837 | biostudies-literature
| S-EPMC5841760 | biostudies-literature
| S-EPMC3437244 | biostudies-literature
| S-EPMC6837876 | biostudies-literature