Association between common genetic variants in the opioid pathway and smoking behaviors in Chinese men.
Ontology highlight
ABSTRACT: There is biological evidence that the brain opioidergic system plays a critical role in the addictive properties of nicotine. The purpose of the present study was to examine the associations of single nucleotide polymorphisms (SNPs) in the genes encoding mu-opioid receptor (MOR) and the MOR-interacting proteins (including OPRM1, ARRB2, and HINT1) with smoking behaviors in Chinese men.A total of 284 subjects (including current and ex-smokers) were recruited. Special questionnaires were used to assess smoking behaviors including age of smoking initiation, daily cigarette consumption, and Fagerström test for nicotine dependence (FTND) score. Participant samples were genotyped for six SNPs in the opioid pathway genes: rs1799971 in OPRM1, rs1045280, rs2036657 and rs3786047 in ARRB2, rs3852209 and rs2278060 in HINT1. Linear and logistic regression models were used to determine single-locus and haplotype-based association analyses.There was no significant association between any of SNPs analyzed and smoking behaviors. Logistic regression analyses under dominant, recessive, and additive models showed no significant associations of the six SNPs with smoking status (current vs. ex-smokers). After adjustment for age at enrollment and smoking initiation age, HINT1 rs3852209 was significantly associated with smoking status with an OR of 0.54 (95% CI, 0.31-0.95; P?=?0.03) under dominant inheritance model. No haplotypes in ARRB2 or HINT1 were related to smoking status.The present study indicates no significant association between common genetic variations in MOR and MOR-interacting proteins and smoking behaviors in Chinese men, and gives suggestive evidence that HINT1 rs3852209 may be related to smoking status. The findings require confirmation from further studies in additional larger samples.
SUBMITTER: Fang J
PROVIDER: S-EPMC3899627 | biostudies-literature | 2014 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA