Ontology highlight
ABSTRACT: Background and objective
Using an in vitro experimental model of immobilized tissue factor-initiated clot growth in platelet-free plasma (thrombodynamics), we observed formation of activator-independent isolated spontaneous clots (SC) throughout the plasma volume in patients with cardiac infarction, acute leukemia, hemolytic anemia, and some other disorders. The aim of this work was to characterize this phenomenon and to identify the mechanisms of SC formation.Methods and results
Tissue factor inhibitor (VIIai) prevented SC in only 2 out of 23 patient plasma samples. Specific inhibitors of factors IXa and XIa were efficient in all 8 cases that we tested. Also, only factors IXa and XIa added to normal donors' plasma induced SC formations from isolated centers, in a pattern similar to that in patients' plasma. In contrast, factors VIIa, Va, tissue factor induced uniform plasma clotting. SC disappeared after high-speed centrifugation. However, phospholipid supplementation of centrifuged plasma returned them at least partially in 5 out of 22 patients' plasmas, indicating some other role of microparticles than providing phospholipid surface. Circulating procoagulant microparticles isolated from plasma directly activated factor XII in buffer and in diluted plasma. Flow cytometry revealed an increase in procoagulant microparticles in patients' plasmas with SC.Conclusion
Our data suggest that combination of circulating active factors (specifically, factors IXa and XIa) with circulating procoagulant and contact-pathway-activating microparticles is the predominant mechanism causing spontaneous clotting in patient plasma.
SUBMITTER: Lipets E
PROVIDER: S-EPMC3909194 | biostudies-literature | 2014
REPOSITORIES: biostudies-literature
PloS one 20140131 1
<h4>Background and objective</h4>Using an in vitro experimental model of immobilized tissue factor-initiated clot growth in platelet-free plasma (thrombodynamics), we observed formation of activator-independent isolated spontaneous clots (SC) throughout the plasma volume in patients with cardiac infarction, acute leukemia, hemolytic anemia, and some other disorders. The aim of this work was to characterize this phenomenon and to identify the mechanisms of SC formation.<h4>Methods and results</h4 ...[more]