Epigenetic and genetic inactivation of tyrosyl-DNA-phosphodiesterase 1 (TDP1) in human lung cancer cells from the NCI-60 panel.
Ontology highlight
ABSTRACT: Tyrosyl-DNA-phosphodiesterase 1 (TDP1) repairs 3'-blocking DNA lesions by catalytically hydrolyzing the tyrosyl-DNA-phosphodiester bond of trapped topoisomerase I (Top1) cleavage complexes (Top1cc). It also removes 3'-blocking residues derived from oxidative damage or incorporation of chain terminating anticancer and antiviral nucleosides. Thus, TDP1 is regarded as a determinant of resistance to Top1 inhibitors and chain terminating nucleosides, and possibly of genomic stability. In the 60 cell lines of the NCI Developmental Therapeutic Anticancer Screen (the NCI-60), whose whole genome transcriptome and mutations have recently been characterized, we discovered two human lung cancer cell lines deficient for TDP1 (NCI_H522 and HOP_62). HOP_62 shows undetectable TDP1 mRNA and NCI_H522 bears a homozygous deleterious mutation of TDP1 at a highly conserved amino acid residue (K292E). Absence of TDP1 protein and lack of TDP1 catalytic activity were demonstrated in cell lysates from both cell lines. Lack of TDP1 expression in HOP_62 was shown to be due to TDP1 promoter hypermethylation. Our study provides insights into the possible inactivation of TDP1 in cancers and its relationship to cellular response to Top1-targeted drugs. It also reveals two TDP1 knockout lung cancer cell lines for further TDP1 functional analyses.
SUBMITTER: Gao R
PROVIDER: S-EPMC3919147 | biostudies-literature | 2014 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA