Unknown

Dataset Information

0

Kinotypes: stable species- and individual-specific profiles of cellular kinase activity.


ABSTRACT:

Background

Recently, questions have been raised regarding the ability of animal models to recapitulate human disease at the molecular level. It has also been demonstrated that cellular kinases, individually or as a collective unit (the kinome), play critical roles in regulating complex biology. Despite the intimate relationship between kinases and health, little is known about the variability, consistency and stability of kinome profiles across species and individuals.

Results

As a preliminary investigation of the existence of species- and individual-specific kinotypes (kinome signatures), peptide arrays were employed for the analysis of peripheral blood mononuclear cells collected weekly from human and porcine subjects (n = 6) over a one month period. The data revealed strong evidence for species-specific signalling profiles. Both humans and pigs also exhibited evidence for individual-specific kinome profiles that were independent of natural changes in blood cell populations.

Conclusions

Species-specific kinotypes could have applications in disease research by facilitating the selection of appropriate animal models or by revealing a baseline kinomic signature to which treatment-induced profiles could be compared. Similarly, individual-specific kinotypes could have implications in personalized medicine, where the identification of molecular patterns or signatures within the kinome may depend on both the levels of kinome diversity and temporal stability across individuals.

SUBMITTER: Trost B 

PROVIDER: S-EPMC3924188 | biostudies-literature | 2013 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Kinotypes: stable species- and individual-specific profiles of cellular kinase activity.

Trost Brett B   Kindrachuk Jason J   Scruten Erin E   Griebel Philip P   Kusalik Anthony A   Napper Scott S  

BMC genomics 20131205


<h4>Background</h4>Recently, questions have been raised regarding the ability of animal models to recapitulate human disease at the molecular level. It has also been demonstrated that cellular kinases, individually or as a collective unit (the kinome), play critical roles in regulating complex biology. Despite the intimate relationship between kinases and health, little is known about the variability, consistency and stability of kinome profiles across species and individuals.<h4>Results</h4>As  ...[more]

Similar Datasets

| S-EPMC6026745 | biostudies-literature
| S-EPMC6754293 | biostudies-literature
| S-EPMC2710625 | biostudies-literature
| S-EPMC2441468 | biostudies-literature
| S-EPMC2739094 | biostudies-literature
| S-EPMC3663048 | biostudies-literature
| S-EPMC2976199 | biostudies-literature
| S-EPMC6151389 | biostudies-literature
| S-EPMC5535152 | biostudies-literature
| S-EPMC2853780 | biostudies-literature