Unknown

Dataset Information

0

RNA aptamer probes as optical imaging agents for the detection of amyloid plaques.


ABSTRACT: Optical imaging using multiphoton microscopy and whole body near infrared imaging has become a routine part of biomedical research. However, optical imaging methods rely on the availability of either small molecule reporters or genetically encoded fluorescent proteins, which are challenging and time consuming to develop. While directly labeled antibodies can also be used as imaging agents, antibodies are species specific, can typically not be tagged with multiple fluorescent reporters without interfering with target binding, and are bioactive, almost always eliciting a biological response and thereby influencing the process that is being studied. We examined the possibility of developing highly specific and sensitive optical imaging agents using aptamer technology. We developed a fluorescently tagged anti-A? RNA aptamer, ?55, which binds amyloid plaques in both ex vivo human Alzheimer's disease brain tissue and in vivo APP/PS1 transgenic mice. Diffuse ?55 positive halos, attributed to oligomeric A?, were observed surrounding the methoxy-XO4 positive plaque cores. Dot blots of synthetic A? aggregates provide further evidence that ?55 binds both fibrillar and non-fibrillar A?. The high binding affinity, the ease of probe development, and the ability to incorporate multiple and multimodal imaging reporters suggest that RNA aptamers may have complementary and perhaps advantageous properties compared to conventional optical imaging probes and reporters.

SUBMITTER: Farrar CT 

PROVIDER: S-EPMC3935954 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

RNA aptamer probes as optical imaging agents for the detection of amyloid plaques.

Farrar Christian T CT   William Christopher M CM   Hudry Eloise E   Hashimoto Tadafumi T   Hyman Bradley T BT  

PloS one 20140226 2


Optical imaging using multiphoton microscopy and whole body near infrared imaging has become a routine part of biomedical research. However, optical imaging methods rely on the availability of either small molecule reporters or genetically encoded fluorescent proteins, which are challenging and time consuming to develop. While directly labeled antibodies can also be used as imaging agents, antibodies are species specific, can typically not be tagged with multiple fluorescent reporters without in  ...[more]

Similar Datasets

| S-EPMC6040043 | biostudies-literature
| S-EPMC4007700 | biostudies-literature
| S-EPMC4027563 | biostudies-literature
| S-EPMC5134568 | biostudies-literature
| S-EPMC10313827 | biostudies-literature
| S-EPMC2597440 | biostudies-literature
| S-EPMC2593886 | biostudies-literature
| S-EPMC3228909 | biostudies-literature
| S-EPMC5217050 | biostudies-literature
| S-EPMC3681954 | biostudies-literature