Project description:Subtype-selective antagonists for muscarinic acetylcholine receptors (mAChRs) have long been elusive, owing to the highly conserved orthosteric binding site. However, allosteric sites of these receptors are less conserved, motivating the search for allosteric ligands that modulate agonists or antagonists to confer subtype selectivity. Accordingly, a 4.6 million-molecule library was docked against the structure of the prototypical M2 mAChR, seeking molecules that specifically stabilized antagonist binding. This led us to identify a positive allosteric modulator (PAM) that potentiated the antagonist N-methyl scopolamine (NMS). Structure-based optimization led to compound '628, which enhanced binding of NMS, and the drug scopolamine itself, with a cooperativity factor (α) of 5.5 and a KB of 1.1 μM, while sparing the endogenous agonist acetylcholine. NMR spectral changes determined for methionine residues reflected changes in the allosteric network. Moreover, '628 slowed the dissociation rate of NMS from the M2 mAChR by 50-fold, an effect not observed at the other four mAChR subtypes. The specific PAM effect of '628 on NMS antagonism was conserved in functional assays, including agonist stimulation of [35S]GTPγS binding and ERK 1/2 phosphorylation. Importantly, the selective allostery between '628 and NMS was retained in membranes from adult rat hypothalamus and in neonatal rat cardiomyocytes, supporting the physiological relevance of this PAM/antagonist approach. This study supports the feasibility of discovering PAMs that confer subtype selectivity to antagonists; molecules like '628 can convert an armamentarium of potent but nonselective GPCR antagonist drugs into subtype-selective reagents, thus reducing their off-target effects.
Project description:The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.
Project description:Muscarinic acetylcholine receptors are G protein-coupled receptors that respond to acetylcholine and play important signaling roles in the nervous system. There are five muscarinic receptor subtypes (M1R to M5R), which, despite sharing a high degree of sequence identity in the transmembrane region, couple to different heterotrimeric GTP-binding proteins (G proteins) to transmit signals. M1R, M3R, and M5R couple to the Gq/ 11 family, whereas M2R and M4R couple to the Gi/ o family. Here, we present and compare the cryo-electron microscopy structures of M1R in complex with G11 and M2R in complex with GoA The M1R-G11 complex exhibits distinct features, including an extended transmembrane helix 5 and carboxyl-terminal receptor tail that interacts with G protein. Detailed analysis of these structures provides a framework for understanding the molecular determinants of G-protein coupling selectivity.
Project description:Endocytosis and postendocytic sorting of G-protein-coupled receptors (GPCRs) is important for the regulation of both their cell surface density and signaling profile. Unlike the mechanisms of clathrin-dependent endocytosis (CDE), the mechanisms underlying the control of GPCR signaling by clathrin-independent endocytosis (CIE) remain largely unknown. Among the muscarinic acetylcholine receptors (mAChRs), the M4 mAChR undergoes CDE and recycling, whereas the M2 mAChR is internalized through CIE and targeted to lysosomes. Here we investigated the endocytosis and postendocytic trafficking of M2 mAChR based on a comparative analysis of the third cytoplasmic domain in M2 and M4 mAChRs. For the first time, we identified that the sequence (374)KKKPPPS(380) servers as a sorting signal for the clathrin-independent internalization of M2 mAChR. Switching (374)KKKPPPS(380) to the i3 loop of the M4 mAChR shifted the receptor into lysosomes through the CIE pathway; and therefore away from CDE and recycling. We also found another previously unidentified sequence that guides CDE of the M2 mAChR, (361)VARKIVKMTKQPA(373), which is normally masked in the presence of the downstream sequence (374)KKKPPPS(380). Taken together, our data indicate that endocytosis and postendocytic sorting of GPCRs that undergo CIE could be sequence-dependent.
Project description:The M3 muscarinic acetylcholine receptor (CHRM3) is predominantly expressed in the basal epidermal layer where it mediates the effects of the auto/paracrine cytotransmitter acetylcholine. Patients with the autoimmune blistering disease pemphigus develop autoantibodies to CHRM3 and show alterations in keratinocyte adhesion, proliferation and differentiation, suggesting that CHRM3 controls these cellular functions. Chrm3 mice display altered epidermal morphology resembling that seen in patients with pemphigus vulgaris. Here, we characterized the cellular and molecular mechanisms whereby CHRM3 controls epidermal structure and function. We used single cell (sc)RNA-seq to evaluate keratinocyte heterogeneity and identify differentially expressed genes in specific subpopulations of epidermal cells in Chrm3 KO neonatal mice.
Project description:Recent years have seen a large increase in the discovery of allosteric ligands targeting muscarinic acetylcholine receptors (mAChRs). One of the challenges in screening such compounds is to understand their mechanisms of action and define appropriate parameter estimates for affinity, cooperativity and efficacy. Herein we describe the mechanisms of action and structure-activity relationships for a series of "pan-Gq-coupled" muscarinic acetylcholine (ACh) receptor (mAChR) positive allosteric modulators (PAMs). Using a combination of radioligand binding, functional inositol phosphate accumulation assays, receptor alkylation and operational data analysis, we show that most compounds in the series derive their variable potency and selectivity from differential cooperativity at the M1, M3 and M5 mAChRs. None of the PAMs showed greater than 10-fold subtype selectivity for the agonist-free receptor, but VU6007705, VU6007678, and VU6008555 displayed markedly increased cooperativity compared to the parent molecule and M5 mAChR-preferring PAM, ML380 (?? > 100), in the presence of ACh. Most of the activity of these PAMs derives from their ability to potentiate ACh binding affinity at mAChRs, though VU6007678 was notable for also potentiating ACh signaling efficacy and robust allosteric agonist activity. These data provide key insights for the future design of more potent and subtype-selective mAChR PAMs.
Project description:The development of antibodies against human G-protein-coupled receptors (GPCRs) has achieved limited success, which has mainly been attributed to their low stability in a detergent-solubilized state. We herein describe a method that can generally be applied to the selection of phage display libraries with human GPCRs reconstituted in liposomes. A key feature of this approach is the production of biotinylated proteoliposomes that can be immobilized on the surface of streptavidin-coupled microplates or paramagnetic beads and used as a binding target for antibodies. As an example, we isolated a single chain Fv fragment from an immune phage library that specifically binds to the human M2 muscarinic acetylcholine receptor with nanomolar affinity. The selected antibody fragment recognized the GPCR in both detergent-solubilized and membrane-embedded forms, which suggests that it may be a potentially valuable tool for structural and functional studies of the GPCR. The use of proteoliposomes as immunogens and screening bait will facilitate the application of phage display to this difficult class of membrane proteins.
Project description:1. A zebrafish M2 muscarinic acetylcholine receptor (mAChR) gene was cloned. It encodes 495 amino acids in a single exon. The derived amino acid sequence is 73.5% identical to its human homologue. 2. Competitive binding studies of the zebrafish M2 receptor and [(3)H]-NMS gave negative log dissociation constants (pK(i)) for each antagonist as follows: atropine (9.16)>himbacine (8.05)>/=4-DAMP (7.83)>AF-DX 116 (7.26)>/=pirenzepine (7.18)>/=tropicamide (6.97)>/=methoctramine (6.82)>/=p-F-HHSiD (6.67)>carbachol (5.20). The antagonist affinity profile correlated with the profile of the human M2 receptor, except for pirenzepine. 3. Reverse transcription polymerase chain reaction and Southern blotting analysis demonstrated that the M2 mAChR mRNA levels increased during the segmentation period (12 h post-fertilization; h.p.f.) in zebrafish. By whole-mount in situ hybridization, the M2 mAChR was first detectable in the heart, vagus motor ganglion, and vagus sensory ganglion at 30, 48 and 60 h.p.f., respectively. 4. The muscarinic receptor that mediates carbachol (CCh)-induced bradycardia was functionally mature at 72 h.p.f. The effect of CCh-induced bradycardia was antagonized by several muscarinic receptor antagonists with the order of potency (pIC(50) values): atropine (6.76)>methoctramine (6.47)>himbacine (6.10)>4-DAMP (5.72)>AF-DX 116 (4.77), however, not by pirenzepine, p-F-HHSiD, or tropicamide (<10 micro M). 5. The effect of CCh-induced bradycardia was abolished completely before 56 h.p.f. by M2 RNA interference, and the bradycardia effect gradually recovered after 72 h.p.f. The basal heart rate was increased in embryos injected with M2 mAChR morpholino antisense oligonucleotide (M2 MO) and the effect of CCh-induced bradycardia was abolished by M2 MO in a dose-dependent manner. In conclusion, the results suggest that the M2 mAChR inhibit basal heart rate in zebrafish embryo and the M2 mAChR mediates the CCh-induced bradycardia.
Project description:Allosteric modulation is involved in a plethora of diverse protein functions, which are fundamental for cells' life. This phenomenon can be thought as communication between two topographically distinct site of a protein structure. How this communication occurs is still matter of debate. Many different descriptions have been presented so far. Here we consider a specific case where any significant conformational change is involved upon allosteric modulator binding and the phenomenon is depicted as a vibrational energy diffusion process between distant protein regions. We applied this model, by employing computational tools, to the human muscarinic receptor M2, a transmembrane protein G-protein coupled receptor known to undergo allosteric modulation whose recently X-ray structure has been recently resolved both with and without the presence of a particular allosteric modulator. Our calculations, performed on these two receptor structures, suggest that for this case the allosteric modulator modifies the energy current between functionally relevant regions of the protein; this allows to identify the main residues responsible for this modulation. These results contribute to shed light on the molecular basis of allosteric modulation and may help design new allosteric ligands.