Unknown

Dataset Information

0

Surface-mediated bone tissue morphogenesis from tunable nanolayered implant coatings.


ABSTRACT: The functional success of a biomedical implant critically depends on its stable bonding with the host tissue. Aseptic implant loosening accounts for more than half of all joint replacement failures. Various materials, including metals and plastic, confer mechanical integrity to the device, but often these materials are not suitable for direct integration with the host tissue, which leads to implant loosening and patient morbidity. We describe a self-assembled, osteogenic, polymer-based conformal coating that promotes stable mechanical fixation of an implant in a surrogate rodent model. A single modular, polymer-based multilayered coating was deposited using a water-based layer-by-layer approach, by which each element was introduced on the surface in nanoscale layers. Osteoconductive hydroxyapatite (HAP) and osteoinductive bone morphogenetic protein-2 (BMP-2) contained within the nanostructured coating acted synergistically to induce osteoblastic differentiation of endogenous progenitor cells within the bone marrow, without indications of a foreign body response. The tuned release of BMP-2, controlled by a hydrolytically degradable poly(?-amino ester), was essential for tissue regeneration, and in the presence of HAP, the modular coating encouraged the direct deposition of highly cohesive trabecular bone on the implant surface. In vivo, the bone-implant interfacial tensile strength was significantly higher than standard bioactive bone cement, did not fracture at the interface, and had long-term stability. Collectively, these results suggest that the multilayered coating system promotes biological fixation of orthopedic and dental implants to improve surgical outcomes by preventing loosening and premature failure.

SUBMITTER: Shah NJ 

PROVIDER: S-EPMC4001255 | biostudies-literature | 2013 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Surface-mediated bone tissue morphogenesis from tunable nanolayered implant coatings.

Shah Nisarg J NJ   Hyder Md Nasim MN   Moskowitz Joshua S JS   Quadir Mohiuddin A MA   Morton Stephen W SW   Seeherman Howard J HJ   Padera Robert F RF   Spector Myron M   Hammond Paula T PT  

Science translational medicine 20130601 191


The functional success of a biomedical implant critically depends on its stable bonding with the host tissue. Aseptic implant loosening accounts for more than half of all joint replacement failures. Various materials, including metals and plastic, confer mechanical integrity to the device, but often these materials are not suitable for direct integration with the host tissue, which leads to implant loosening and patient morbidity. We describe a self-assembled, osteogenic, polymer-based conformal  ...[more]

Similar Datasets

| S-EPMC6501197 | biostudies-literature
| S-EPMC7881029 | biostudies-literature
| S-EPMC3870474 | biostudies-literature
| S-EPMC8604412 | biostudies-literature
| S-EPMC6033191 | biostudies-literature
| S-EPMC7694209 | biostudies-literature
| S-EPMC6451405 | biostudies-literature
| S-EPMC5541986 | biostudies-other
| S-EPMC8003264 | biostudies-literature
| S-EPMC3414815 | biostudies-other