Homer1 alternative splicing is regulated by gonadotropin-releasing hormone and modulates gonadotropin gene expression.
Ontology highlight
ABSTRACT: Hypothalamic gonadotropin-releasing hormone (GnRH) plays a critical role in reproductive physiology by regulating follicle-stimulating hormone (FSH) and luteinizing hormone (LH) gene expression in the pituitary. Analysis of gonadotrope deep-sequencing data identified a global regulation of pre-mRNA splicing by GnRH. Homer1, a gene encoding a postsynaptic density scaffolding protein, was selected for further study. Homer1 expresses a short splice form, Homer1a, and more-abundant long transcripts Homer1b/c. GnRH induced a modest increase in Homer1b/c expression and a dramatic increase in the Homer1a splice form. G protein knockdown studies suggested that the Homer1 induction, but not the regulated splicing, was G?q/11 dependent. Phosphorylation of the splicing regulator SRp20 was found to be induced by GnRH. SRp20 depletion attenuated the GnRH-induced increase in the Homer1a-to-Homer1b/c ratio and modulated the effects of GnRH on FSH? and LH? expression. Homer1 gene knockdown resulted in increased GnRH-induced FSH? and LH? transcript levels. Furthermore, splice-form-specific reduction of Homer1b/c increased both FSH? and LH? mRNA induction, whereas reduction of Homer1a had the opposite effect on FSH? induction. These results indicate that the regulation of Homer1 splicing by GnRH contributes to gonadotropin gene control.
SUBMITTER: Wang Q
PROVIDER: S-EPMC4019030 | biostudies-literature | 2014 May
REPOSITORIES: biostudies-literature
ACCESS DATA