Unknown

Dataset Information

0

Network topology-based detection of differential gene regulation and regulatory switches in cell metabolism and signaling.


ABSTRACT: BACKGROUND: Common approaches to pathway analysis treat pathways merely as lists of genes disregarding their topological structures, that is, ignoring the genes' interactions on which a pathway's cellular function depends. In contrast, PathWave has been developed for the analysis of high-throughput gene expression data that explicitly takes the topology of networks into account to identify both global dysregulation of and localized (switch-like) regulatory shifts within metabolic and signaling pathways. For this purpose, it applies adjusted wavelet transforms on optimized 2D grid representations of curated pathway maps. RESULTS: Here, we present the new version of PathWave with several substantial improvements including a new method for optimally mapping pathway networks unto compact 2D lattice grids, a more flexible and user-friendly interface, and pre-arranged 2D grid representations. These pathway representations are assembled for several species now comprising H. sapiens, M. musculus, D. melanogaster, D. rerio, C. elegans, and E. coli. We show that PathWave is more sensitive than common approaches and apply it to RNA-seq expression data, identifying crucial metabolic pathways in lung adenocarcinoma, as well as microarray expression data, identifying pathways involved in longevity of Drosophila. CONCLUSIONS: PathWave is a generic method for pathway analysis complementing established tools like GSEA, and the update comprises efficient new features. In contrast to the tested commonly applied approaches which do not take network topology into account, PathWave enables identifying pathways that are either known be involved in or very likely associated with such diverse conditions as human lung cancer or aging of D. melanogaster. The PathWave R package is freely available at http://www.ichip.de/software/pathwave.html.

SUBMITTER: Piro RM 

PROVIDER: S-EPMC4031158 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Network topology-based detection of differential gene regulation and regulatory switches in cell metabolism and signaling.

Piro Rosario M RM   Wiesberg Stefan S   Schramm Gunnar G   Rebel Nico N   Oswald Marcus M   Eils Roland R   Reinelt Gerhard G   König Rainer R  

BMC systems biology 20140516


<h4>Background</h4>Common approaches to pathway analysis treat pathways merely as lists of genes disregarding their topological structures, that is, ignoring the genes' interactions on which a pathway's cellular function depends. In contrast, PathWave has been developed for the analysis of high-throughput gene expression data that explicitly takes the topology of networks into account to identify both global dysregulation of and localized (switch-like) regulatory shifts within metabolic and sign  ...[more]

Similar Datasets

| S-EPMC549453 | biostudies-literature
| S-EPMC7794440 | biostudies-literature
| S-EPMC3071805 | biostudies-literature
| S-EPMC8013980 | biostudies-literature
| S-EPMC4537063 | biostudies-literature
| S-EPMC6833256 | biostudies-literature
| S-EPMC5159802 | biostudies-literature
| S-EPMC5041474 | biostudies-literature
| S-EPMC1884177 | biostudies-literature
| S-EPMC6445151 | biostudies-literature