Unknown

Dataset Information

0

Nanoscale Control of Silks for Nanofibrous Scaffold Formation with Improved Porous Structure.


ABSTRACT: Silk-based porous scaffolds have been used extensively in tissue engineering because of their excellent biocompatibility, tunable biodegradability and robust mechanical properties. Although many silk-based scaffolds have been prepared through freeze-drying, a challenge remains to effectively control porous structures during this process. In the present study silk fibroin with different nanostructures were self-assembled in aqueous solution by repeated drying-dissolving process and then used to improve porous structure formation in lyophilization process. Viscosity, secondary structures and water interactions were also studied to exclude their influence on the formation and control of porous structures. Following nanofiber formation in aqueous solution, silk scaffolds with improved porous structure were directly formed after lyophilization and then stabilized with water or methanol annealing treatments. Compared to silk scaffolds derived from fresh solution, the nanofibrous scaffolds showed significantly better cell compatibility in vitro. Therefore, this nanoscale control of silk offers feasible way to regulate the matrix features including porous structure and nanostructure, which are important in regulating cell and tissue outcomes in tissue engineering and regeneration, and then achieve silk-based scaffolds with improved properties.

SUBMITTER: Lin S 

PROVIDER: S-EPMC4059761 | biostudies-literature | 2014 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Nanoscale Control of Silks for Nanofibrous Scaffold Formation with Improved Porous Structure.

Lin Shasha S   Lu Guozhong G   Liu Shanshan S   Bai Shumeng S   Liu Xi X   Lu Qiang Q   Zuo Baoqi B   Kaplan David L DL   Zhu Hesun H  

Journal of materials chemistry. B 20140501 17


Silk-based porous scaffolds have been used extensively in tissue engineering because of their excellent biocompatibility, tunable biodegradability and robust mechanical properties. Although many silk-based scaffolds have been prepared through freeze-drying, a challenge remains to effectively control porous structures during this process. In the present study silk fibroin with different nanostructures were self-assembled in aqueous solution by repeated drying-dissolving process and then used to i  ...[more]

Similar Datasets

| S-EPMC6249227 | biostudies-literature
| S-EPMC3648342 | biostudies-literature
| S-EPMC4251501 | biostudies-literature
| S-EPMC5603539 | biostudies-literature
| S-EPMC9054300 | biostudies-literature
| S-EPMC6010419 | biostudies-literature
| S-EPMC7186540 | biostudies-literature
| S-EPMC9250523 | biostudies-literature
| S-EPMC5181114 | biostudies-literature
| S-EPMC10975244 | biostudies-literature