Unknown

Dataset Information

0

Chemi- vs physisorption in the radical functionalization of single-walled carbon nanotubes under microwaves.


ABSTRACT: The effect of microwaves on the functionalization of single-walled carbon nanotubes (SWNTs) by the diazonium method was studied. The usage of a new approach led to the identification of the strength of the interaction (physical or chemical) between the functional groups and the carbon nanotube surface. Moreover, the nature (chemical formula) of the adsorbed/grafted functional groups was determined. According to thermogravimetric analysis coupled with mass spectrometry and Raman spectroscopy, the optimal functionalization level was reached after 5 min of reaction. Prolonged reaction times can lead to undesired reactions such as defunctionalization, solvent addition and polymerization of the grafted functions. The strength (chemi- vs physisorption) of the bonds between the grafted functional groups and the SWNTs is discussed showing the occurrence of physical adsorption as a consequence of defunctionalization after 15 min of reaction under microwaves. Several chemical mechanisms of grafting could be identified, and it was possible to distinguish conditions leading to the desired chemical grafting from those leading to undesired reactions such as physisorption and polymerization.

SUBMITTER: Mamane V 

PROVIDER: S-EPMC4077304 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Chemi- vs physisorption in the radical functionalization of single-walled carbon nanotubes under microwaves.

Mamane Victor V   Mercier Guillaume G   Abdul Shukor Junidah J   Gleize Jérôme J   Azizan Aziz A   Fort Yves Y   Vigolo Brigitte B  

Beilstein journal of nanotechnology 20140429


The effect of microwaves on the functionalization of single-walled carbon nanotubes (SWNTs) by the diazonium method was studied. The usage of a new approach led to the identification of the strength of the interaction (physical or chemical) between the functional groups and the carbon nanotube surface. Moreover, the nature (chemical formula) of the adsorbed/grafted functional groups was determined. According to thermogravimetric analysis coupled with mass spectrometry and Raman spectroscopy, the  ...[more]

Similar Datasets

| S-EPMC9607432 | biostudies-literature
| S-EPMC8746816 | biostudies-literature
| S-EPMC6390973 | biostudies-literature
| S-EPMC5615827 | biostudies-literature
| S-EPMC4383660 | biostudies-literature
| S-EPMC10057402 | biostudies-literature
| S-EPMC2424233 | biostudies-literature
2023-03-16 | GSE223520 | GEO
| S-EPMC8038725 | biostudies-literature
| S-EPMC4434219 | biostudies-literature