Collision avoidance during group evasive manoeuvres: a comparison of real versus simulated swarms with manipulated vision and surface wave detectors.
Ontology highlight
ABSTRACT: Coordinated group motion has been studied extensively both in real systems (flocks, swarms and schools) and in simulations (self-propelled particle (SPP) models using attraction and repulsion rules). Rarely are attraction and repulsion rules manipulated, and the resulting emergent behaviours of real and simulation systems are compared. We compare swarms of sensory-deprived whirligig beetles with matching simulation models. Whirligigs live at the water's surface and coordinate their grouping using their eyes and antennae. We filmed groups of beetles in which antennae or eyes had been unilaterally obstructed and measured individual and group behaviours. We then developed and compared eight SPP simulation models. Eye-less beetles formed larger diameter resting groups than antenna-less or control groups. Antenna-less groups collided more often with each other during evasive group movements than did eye-less or control groups. Simulations of antenna-less individuals produced no difference from a control (or a slight decrease) in group diameter. Simulations of eye-less individuals produced an increase in group diameter. Our study is important in (i) differentiating between group attraction and repulsion rules, (ii) directly comparing emergent properties of real and simulated groups, and (iii) exploring a new sensory modality (surface wave detection) to coordinate group movement.
SUBMITTER: Romey WL
PROVIDER: S-EPMC4083796 | biostudies-literature | 2014 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA