Project description:The HIV-1 nucleocapsid is formed during protease (PR)-directed viral maturation, and is transformed into pre-integration complexes following reverse transcription in the cytoplasm of the infected cell. Here, we report a detailed transmission electron microscopy analysis of the impact of HIV-1 PR and reverse transcriptase (RT) on nucleocapsid plasticity, using in vitro reconstitutions. After binding to nucleic acids, NCp15, a proteolytic intermediate of nucleocapsid protein (NC), was processed at its C-terminus by PR, yielding premature NC (NCp9) followed by mature NC (NCp7), through the consecutive removal of p6 and p1. This allowed NC co-aggregation with its single-stranded nucleic-acid substrate. Examination of these co-aggregates for the ability of RT to catalyse reverse transcription showed an effective synthesis of double-stranded DNA that, remarkably, escaped from the aggregates more efficiently with NCp7 than with NCp9. These data offer a compelling explanation for results from previous virological studies that focused on i) Gag processing leading to nucleocapsid condensation, and ii) the disappearance of NCp7 from the HIV-1 pre-integration complexes. We propose that HIV-1 PR and RT, by controlling the nucleocapsid architecture during the steps of condensation and dismantling, engage in a successive nucleoprotein-remodelling process that spatiotemporally coordinates the pre-integration steps of HIV-1. Finally we suggest that nucleoprotein remodelling mechanisms are common features developed by mobile genetic elements to ensure successful replication.
Project description:UnlabelledHIV-1 protease (PR), reverse transcriptase (RT), and integrase (IN) variability presents a challenge to laboratories performing genotypic resistance testing. This challenge will grow with increased sequencing of samples enriched for proviral DNA such as dried blood spots and increased use of next-generation sequencing (NGS) to detect low-abundance HIV-1 variants. We analyzed PR and RT sequences from >100,000 individuals and IN sequences from >10,000 individuals to characterize variation at each amino acid position, identify mutations indicating APOBEC-mediated G-to-A editing, and identify mutations resulting from selective drug pressure. Forty-seven percent of PR, 37% of RT, and 34% of IN positions had one or more amino acid variants with a prevalence of ≥1%. Seventy percent of PR, 60% of RT, and 60% of IN positions had one or more variants with a prevalence of ≥0.1%. Overall 201 PR, 636 RT, and 346 IN variants had a prevalence of ≥0.1%. The median intersubtype prevalence ratios were 2.9-, 2.1-, and 1.9-fold for these PR, RT, and IN variants, respectively. Only 5.0% of PR, 3.7% of RT, and 2.0% of IN variants had a median intersubtype prevalence ratio of ≥10-fold. Variants at lower prevalences were more likely to differ biochemically and to be part of an electrophoretic mixture compared to high-prevalence variants. There were 209 mutations indicative of APOBEC-mediated G-to-A editing and 326 mutations nonpolymorphic treatment selected. Identification of viruses with a high number of APOBEC-associated mutations will facilitate the quality control of dried blood spot sequencing. Identifying sequences with a high proportion of rare mutations will facilitate the quality control of NGS.ImportanceMost antiretroviral drugs target three HIV-1 proteins: PR, RT, and IN. These proteins are highly variable: many different amino acids can be present at the same position in viruses from different individuals. Some of the amino acid variants cause drug resistance and occur mainly in individuals receiving antiretroviral drugs. Some variants result from a human cellular defense mechanism called APOBEC-mediated hypermutation. Many variants result from naturally occurring mutation. Some variants may represent technical artifacts. We studied PR and RT sequences from >100,000 individuals and IN sequences from >10,000 individuals to quantify variation at each amino acid position in these three HIV-1 proteins. We performed analyses to determine which amino acid variants resulted from antiretroviral drug selection pressure, APOBEC-mediated editing, and naturally occurring variation. Our results provide information essential to clinical, research, and public health laboratories performing genotypic resistance testing by sequencing HIV-1 PR, RT, and IN.
Project description:Reverse transcription of the HIV-1 RNA genome into double-stranded DNA is a central step in viral infection 1 and a common target of antiretroviral drugs 2 . The reaction is catalysed by viral reverse transcriptase (RT)3,4 that is packaged in an infectious virion with two copies of viral genomic RNA 5 each bound to host lysine 3 transfer RNA (tRNALys3), which acts as a primer for initiation of reverse transcription6,7. Upon viral entry into cells, initiation is slow and non-processive compared to elongation8,9. Despite extensive efforts, the structural basis of RT function during initiation has remained a mystery. Here we use cryo-electron microscopy to determine a three-dimensional structure of an HIV-1 RT initiation complex. In our structure, RT is in an inactive polymerase conformation with open fingers and thumb and with the nucleic acid primer-template complex shifted away from the active site. The primer binding site (PBS) helix formed between tRNALys3 and HIV-1 RNA lies in the cleft of RT and is extended by additional pairing interactions. The 5' end of the tRNA refolds and stacks on the PBS to create a long helical structure, while the remaining viral RNA forms two helical stems positioned above the RT active site, with a linker that connects these helices to the RNase H region of the PBS. Our results illustrate how RNA structure in the initiation complex alters RT conformation to decrease activity, highlighting a potential target for drug action.
Project description:To assess compatibility in sequence analysis we compared results from Sanger sequencing (with sequencing threshold >15%) and Next Generation Sequencing (with sequencing treshold >5%). Totally, there were 60 patients included in this part of the study. Here we demonstrate how reliable tool for fast and accurate identification of low-level viral quasispecies is deep-sequencing.
Project description:To assess compatibility in sequence analysis we compared results from Sanger sequencing (with sequencing threshold >15%) and Next Generation Sequencing (with sequencing treshold >5%). Totally, there were 48 patients included in this part of the study but sequencing for one sample failed. Here we demonstrate how reliable tool for fast and accurate identification of low-level viral quasispecies is deep-sequencing.
Project description:Despite the high degree of HIV-1 protease and reverse transcriptase (RT) mutation in the setting of antiretroviral therapy, the spectrum of possible virus variants appears to be limited by patterns of amino acid covariation. We analyzed patterns of amino acid covariation in protease and RT sequences from more than 7,000 persons infected with HIV-1 subtype B viruses obtained from the Stanford HIV Drug Resistance Database (http://hivdb.stanford.edu). In addition, we examined the relationship between conditional probabilities associated with a pair of mutations and the order in which those mutations developed in viruses for which longitudinal sequence data were available. Patterns of RT covariation were dominated by the distinct clustering of Type I and Type II thymidine analog mutations and the Q151M-associated mutations. Patterns of protease covariation were dominated by the clustering of nelfinavir-associated mutations (D30N and N88D), two main groups of protease inhibitor (PI)-resistance mutations associated either with V82A or L90M, and a tight cluster of mutations associated with decreased susceptibility to amprenavir and the most recently approved PI darunavir. Different patterns of covariation were frequently observed for different mutations at the same position including the RT mutations T69D versus T69N, L74V versus L74I, V75I versus V75M, T215F versus T215Y, and K219Q/E versus K219N/R, and the protease mutations M46I versus M46L, I54V versus I54M/L, and N88D versus N88S. Sequence data from persons with correlated mutations in whom earlier sequences were available confirmed that the conditional probabilities associated with correlated mutation pairs could be used to predict the order in which the mutations were likely to have developed. Whereas accessory nucleoside RT inhibitor-resistance mutations nearly always follow primary nucleoside RT inhibitor-resistance mutations, accessory PI-resistance mutations often preceded primary PI-resistance mutations.
Project description:During HIV-1 reverse transcription, the single-stranded RNA genome is converted into proviral double stranded DNA by Reverse Transcriptase (RT) within a reverse transcription complex composed of the genomic RNA and a number of HIV-1 encoded proteins, including the nucleocapsid protein NCp7. Here, we developed a one-step and one-pot RT polymerization assay. In this in vitro assay, RT polymerization is monitored in real-time by Förster resonance energy transfer (FRET) using a commercially available doubly-labeled primer/template DNA. The assay can monitor and quantify RT polymerization activity as well as its promotion by NCp7. Z-factor values as high as 0.89 were obtained, indicating that the assay is suitable for high-throughput drug screening. Using Nevirapine and AZT as prototypical RT inhibitors, reliable IC50 values were obtained from the changes in the RT polymerization kinetics. Interestingly, the assay can also detect NCp7 inhibitors, making it suitable for high-throughput screening of drugs targeting RT, NCp7 or simultaneously, both proteins.
Project description:We analyzed the reverse transcriptase (RT) and protease sequences of HIV-1 isolates obtained over 7 years from two couples with known transmission histories. Phylogenetic trees constructed from the sequence data reflected the known transmission histories, despite the fact that the drug resistance mutations were most consistent with the drug treatment histories. However, the RT sequences from one couple diverged by 2.9% even before therapy was begun, and three (0.9%) of 339 unrelated individuals had viruses that shared a common ancestor with sequences from the recipient member of the couple but not with sequences from the transmitter. The divergence between the first two isolates from this couple is consistent with a pretransmission interval during which the transmitter developed a heterogeneous virus population. The closeness between the three controls and the recipient's first RT sequence may indicate slower evolution on the branches of the control sequences. Although the RT and protease genes contain phylogenetic information, they are suboptimal for reconstructing transmission history because the genetic distance between RT and protease isolates from unrelated individuals may occasionally approximate the distance between RT and protease isolates from related individuals.
Project description:Access to antiretroviral therapy is increasing globally and drug resistance evolution is anticipated. Currently, protease (PR) and reverse transcriptase (RT) sequence generation is increasing, including the use of in-house sequencing assays, and quality assessment prior to sequence analysis is essential. We created a computational HIV PR/RT Sequence Quality Analysis Tool (SQUAT) that runs in the R statistical environment. Sequence quality thresholds are calculated from a large dataset (46,802 PR and 44,432 RT sequences) from the published literature ( http://hivdb.Stanford.edu ). Nucleic acid sequences are read into SQUAT, identified, aligned, and translated. Nucleic acid sequences are flagged if with >five 1-2-base insertions; >one 3-base insertion; >one deletion; >six PR or >18 RT ambiguous bases; >three consecutive PR or >four RT nucleic acid mutations; >zero stop codons; >three PR or >six RT ambiguous amino acids; >three consecutive PR or >four RT amino acid mutations; >zero unique amino acids; or <0.5% or >15% genetic distance from another submitted sequence. Thresholds are user modifiable. SQUAT output includes a summary report with detailed comments for troubleshooting of flagged sequences, histograms of pairwise genetic distances, neighbor joining phylogenetic trees, and aligned nucleic and amino acid sequences. SQUAT is a stand-alone, free, web-independent tool to ensure use of high-quality HIV PR/RT sequences in interpretation and reporting of drug resistance, while increasing awareness and expertise and facilitating troubleshooting of potentially problematic sequences.
Project description:Previous work on mutations in the thumb of HIV-1 reverse transcriptase (RT) showed that the majority of the mutant RTs were degraded (by the viral protease) to various extents in virions. This degradation was, in most cases, temperature sensitive, and presumably was due to a partial unfolding of the protein at 37°C. We used recombinant proteins to investigate the effects of the mutations on the thermal stability and proteolytic degradation of RT. Both subunits contribute to the stability of RT. In general, the differences in stability between the mutants and WT were greater if the mutation was in p51 rather than p66. Expressing the Pol polyprotein containing the RT mutants in Escherichia coli produced results similar to what was seen in virions; the mutant RTs were misfolded and/or degraded at 37°C, but were better folded and processed at 30°C.