Unknown

Dataset Information

0

Development of multinuclear polymeric nanoparticles as robust protein nanocarriers.


ABSTRACT: One limitation of current biodegradable polymeric nanoparticles is their inability to effectively encapsulate and sustainably release proteins while maintaining protein bioactivity. Here we report the engineering of PLGA-polycation nanoparticles with a core-shell structure that act as a robust vector for the encapsulation and delivery of proteins and peptides. The optimized nanoparticles can load high amounts of proteins (>20?% of nanoparticles by weight) in aqueous solution without organic solvents through electrostatic interactions by simple mixing, thereby forming nanospheres in seconds with diameters <200?nm. The relationship between nanosphere size, surface charge, PLGA-polycation composition, and protein loading is also investigated. The stable nanosphere complexes contain multiple PLGA-polycation nanoparticles, surrounded by large amounts of protein. This study highlights a novel strategy for the delivery of proteins and other relevant molecules.

SUBMITTER: Wu J 

PROVIDER: S-EPMC4143165 | biostudies-literature | 2014 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Development of multinuclear polymeric nanoparticles as robust protein nanocarriers.

Wu Jun J   Kamaly Nazila N   Shi Jinjun J   Shi Jinjun J   Zhao Lili L   Xiao Zeyu Z   Hollett Geoffrey G   John Rohit R   Ray Shaunak S   Xu Xiaoyang X   Zhang Xueqing X   Kantoff Philip W PW   Farokhzad Omid C OC  

Angewandte Chemie (International ed. in English) 20140702 34


One limitation of current biodegradable polymeric nanoparticles is their inability to effectively encapsulate and sustainably release proteins while maintaining protein bioactivity. Here we report the engineering of PLGA-polycation nanoparticles with a core-shell structure that act as a robust vector for the encapsulation and delivery of proteins and peptides. The optimized nanoparticles can load high amounts of proteins (>20 % of nanoparticles by weight) in aqueous solution without organic solv  ...[more]

Similar Datasets

| S-EPMC4012059 | biostudies-literature
| S-EPMC3684255 | biostudies-other
| S-EPMC2652328 | biostudies-literature
| S-EPMC7238125 | biostudies-literature
| S-EPMC9201941 | biostudies-literature
| S-EPMC9961171 | biostudies-literature
| S-EPMC4160375 | biostudies-literature
| S-EPMC10051709 | biostudies-literature
| S-EPMC3631648 | biostudies-literature
| S-EPMC5496926 | biostudies-literature