Unknown

Dataset Information

0

Association of G-quadruplex forming sequences with human mtDNA deletion breakpoints.


ABSTRACT: Mitochondrial DNA (mtDNA) deletions cause disease and accumulate during aging, yet our understanding of the molecular mechanisms underlying their formation remains rudimentary. Guanine-quadruplex (GQ) DNA structures are associated with nuclear DNA instability in cancer; recent evidence indicates they can also form in mitochondrial nucleic acids, suggesting that these non-B DNA structures could be associated with mtDNA deletions. Currently, the multiple types of GQ sequences and their association with human mtDNA stability are unknown.Here, we show an association between human mtDNA deletion breakpoint locations (sites where DNA ends rejoin after deletion of a section) and sequences with G-quadruplex forming potential (QFP), and establish the ability of selected sequences to form GQ in vitro. QFP contain four runs of either two or three consecutive guanines (2G and 3G, respectively), and we identified four types of QFP for subsequent analysis: intrastrand 2G, intrastrand 3G, duplex derived interstrand (ddi) 2G, and ddi 3G QFP sequences. We analyzed the position of each motif set relative to either 5' or 3' unique mtDNA deletion breakpoints, and found that intrastrand QFP sequences, but not ddi QFP sequences, showed significant association with mtDNA deletion breakpoint locations. Moreover, a large proportion of these QFP sequences occur at smaller distances to breakpoints relative to distribution-matched controls. The positive association of 2G QFP sequences persisted when breakpoints were divided into clinical subgroups. We tested in vitro GQ formation of representative mtDNA sequences containing these 2G QFP sequences and detected robust GQ structures by UV-VIS and CD spectroscopy. Notably, the most frequent deletion breakpoints, including those of the "common deletion", are bounded by 2G QFP sequence motifs.The potential for GQ to influence mitochondrial genome stability supports a high-priority investigation of these structures and their regulation in normal and pathological mitochondrial biology. These findings emphasize the potential importance of helicases that subsequently resolve GQ to maintain the stability of the mitochondrial genome.

SUBMITTER: Dong DW 

PROVIDER: S-EPMC4153896 | biostudies-literature | 2014 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Association of G-quadruplex forming sequences with human mtDNA deletion breakpoints.

Dong Dawei W DW   Pereira Filipe F   Barrett Steven P SP   Kolesar Jill E JE   Cao Kajia K   Damas Joana J   Yatsunyk Liliya A LA   Johnson F Brad FB   Kaufman Brett A BA  

BMC genomics 20140813


<h4>Background</h4>Mitochondrial DNA (mtDNA) deletions cause disease and accumulate during aging, yet our understanding of the molecular mechanisms underlying their formation remains rudimentary. Guanine-quadruplex (GQ) DNA structures are associated with nuclear DNA instability in cancer; recent evidence indicates they can also form in mitochondrial nucleic acids, suggesting that these non-B DNA structures could be associated with mtDNA deletions. Currently, the multiple types of GQ sequences an  ...[more]

Similar Datasets

| S-EPMC4937311 | biostudies-literature
| S-EPMC6347517 | biostudies-literature
| S-EPMC10515301 | biostudies-literature
| S-EPMC8056391 | biostudies-literature
| S-EPMC8658440 | biostudies-literature
| S-EPMC3962748 | biostudies-literature
| S-EPMC10711447 | biostudies-literature
| S-EPMC6307822 | biostudies-literature
| S-EPMC7314185 | biostudies-literature
| S-EPMC5891072 | biostudies-literature