The anti-tumor activator sMEK1 and paclitaxel additively decrease expression of HIF-1? and VEGF via mTORC1-S6K/4E-BP-dependent signaling pathways.
Ontology highlight
ABSTRACT: Recently, we found that sMEK1 effectively regulates pro-apoptotic activity when combined with a traditional chemotherapeutic drug. Therefore, combinational therapeutic strategies targeting critical molecular and cellular mechanisms are urgently required. In this present work, we evaluated whether sMEK1 enhanced the pro-apoptotic activity of chemotherapeutic drugs in ovarian carcinoma cells. Combined with a chemotherapeutic drug, sMEK1 showed an additive effect on the suppression of ovarian cancer cell growth by inducing cell cycle arrest and apoptosis and regulating related gene expression levels or protein activities. In addition, the phosphoinositide-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway was strongly inhibited by the combined treatment, showing de-repression of the tuberous sclerosis complex (TSC) and suppression of ras homolog enriched in the brain (Rheb) and mTOR and raptor in aggressive ovarian carcinoma cells and mouse xenograft models. Treatment with sMEK1 and paclitaxel reduced phosphorylation of ribosomal S6 kinase (S6K) and 4E-binding protein (4E-BP), two critical downstream targets of the mTOR-signaling pathway. Furthermore, both sMEK1 and paclitaxel significantly inhibited the expression of signaling components downstream of S6K/4E-BP, such as hypoxia-inducible factor-1? (HIF-1?) and vascular endothelial growth factor (VEGF), both in vitro and in vivo. Therefore, our data suggest that the combination of sMEK1 and paclitaxel is a promising and effective targeted therapy for chemotherapy-resistant or recurrent ovarian cancers.
SUBMITTER: Kim BR
PROVIDER: S-EPMC4171649 | biostudies-literature | 2014 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA