Unknown

Dataset Information

0

GLD-4-mediated translational activation regulates the size of the proliferative germ cell pool in the adult C. elegans germ line.


ABSTRACT: To avoid organ dysfunction as a consequence of tissue diminution or tumorous growth, a tight balance between cell proliferation and differentiation is maintained in metazoans. However, cell-intrinsic gene expression mechanisms controlling adult tissue homeostasis remain poorly understood. By focusing on the adult Caenorhabditis elegans reproductive tissue, we show that translational activation of mRNAs is a fundamental mechanism to maintain tissue homeostasis. Our genetic experiments identified the Trf4/5-type cytoplasmic poly(A) polymerase (cytoPAP) GLD-4 and its enzymatic activator GLS-1 to perform a dual role in regulating the size of the proliferative zone. Consistent with a ubiquitous expression of GLD-4 cytoPAP in proliferative germ cells, its genetic activity is required to maintain a robust proliferative adult germ cell pool, presumably by regulating many mRNA targets encoding proliferation-promoting factors. Based on translational reporters and endogenous protein expression analyses, we found that gld-4 activity promotes GLP-1/Notch receptor expression, an essential factor of continued germ cell proliferation. RNA-protein interaction assays documented also a physical association of the GLD-4/GLS-1 cytoPAP complex with glp-1 mRNA, and ribosomal fractionation studies established that GLD-4 cytoPAP activity facilitates translational efficiency of glp-1 mRNA. Moreover, we found that in proliferative cells the differentiation-promoting factor, GLD-2 cytoPAP, is translationally repressed by the stem cell factor and PUF-type RNA-binding protein, FBF. This suggests that cytoPAP-mediated translational activation of proliferation-promoting factors, paired with PUF-mediated translational repression of differentiation factors, forms a translational control circuit that expands the proliferative germ cell pool. Our additional genetic experiments uncovered that the GLD-4/GLS-1 cytoPAP complex promotes also differentiation, forming a redundant translational circuit with GLD-2 cytoPAP and the translational repressor GLD-1 to restrict proliferation. Together with previous findings, our combined data reveals two interconnected translational activation/repression circuitries of broadly conserved RNA regulators that maintain the balance between adult germ cell proliferation and differentiation.

SUBMITTER: Millonigg S 

PROVIDER: S-EPMC4177745 | biostudies-literature | 2014 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

GLD-4-mediated translational activation regulates the size of the proliferative germ cell pool in the adult C. elegans germ line.

Millonigg Sophia S   Minasaki Ryuji R   Nousch Marco M   Novak Jakub J   Eckmann Christian R CR  

PLoS genetics 20140925 9


To avoid organ dysfunction as a consequence of tissue diminution or tumorous growth, a tight balance between cell proliferation and differentiation is maintained in metazoans. However, cell-intrinsic gene expression mechanisms controlling adult tissue homeostasis remain poorly understood. By focusing on the adult Caenorhabditis elegans reproductive tissue, we show that translational activation of mRNAs is a fundamental mechanism to maintain tissue homeostasis. Our genetic experiments identified  ...[more]

Similar Datasets

| S-EPMC3652309 | biostudies-literature
2013-04-10 | E-GEOD-41417 | biostudies-arrayexpress
2013-04-10 | GSE41417 | GEO
| S-EPMC2804340 | biostudies-literature
| S-EPMC1334682 | biostudies-literature
| S-EPMC19442 | biostudies-literature
| S-EPMC6290072 | biostudies-literature
| S-EPMC2746148 | biostudies-literature
| S-EPMC2809760 | biostudies-literature
| S-EPMC4262444 | biostudies-literature