Unknown

Dataset Information

0

Luminescence color switching of supramolecular assemblies of discrete molecular decanuclear gold(I) sulfido complexes.


ABSTRACT: A series of discrete decanuclear gold(I) ?(3)-sulfido complexes with alkyl chains of various lengths on the aminodiphosphine ligands, [Au(10){Ph(2)PN(C(n)H2(n+1))PPh(2)}(4)(?(3)-S)(4)](ClO(4))(2), has been synthesized and characterized. These complexes have been shown to form supramolecular nanoaggregate assemblies upon solvent modulation. The photoluminescence (PL) colors of the nanoaggregates can be switched from green to yellow to red by varying the solvent systems from which they are formed. The PL color variation was investigated and correlated with the nanostructured morphological transformation from the spherical shape to the cube as observed by transmission electron microscopy and scanning electron microscopy. Such variations in PL colors have not been observed in their analogous complexes with short alkyl chains, suggesting that the long alkyl chains would play a key role in governing the supramolecular nanoaggregate assembly and the emission properties of the decanuclear gold(I) sulfido complexes. The long hydrophobic alkyl chains are believed to induce the formation of supramolecular nanoaggregate assemblies with different morphologies and packing densities under different solvent systems, leading to a change in the extent of Au(I)-Au(I) interactions, rigidity, and emission properties.

SUBMITTER: Hau FK 

PROVIDER: S-EPMC4234610 | biostudies-literature | 2014 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Luminescence color switching of supramolecular assemblies of discrete molecular decanuclear gold(I) sulfido complexes.

Hau Franky Ka-Wah FK   Lee Terence Kwok-Ming TK   Cheng Eddie Chung-Chin EC   Au Vonika Ka-Man VK   Yam Vivian Wing-Wah VW  

Proceedings of the National Academy of Sciences of the United States of America 20141031 45


A series of discrete decanuclear gold(I) μ(3)-sulfido complexes with alkyl chains of various lengths on the aminodiphosphine ligands, [Au(10){Ph(2)PN(C(n)H2(n+1))PPh(2)}(4)(μ(3)-S)(4)](ClO(4))(2), has been synthesized and characterized. These complexes have been shown to form supramolecular nanoaggregate assemblies upon solvent modulation. The photoluminescence (PL) colors of the nanoaggregates can be switched from green to yellow to red by varying the solvent systems from which they are formed.  ...[more]

Similar Datasets

| S-EPMC6017277 | biostudies-literature
| S-EPMC7914842 | biostudies-literature
| S-EPMC6568310 | biostudies-literature
| S-EPMC9307440 | biostudies-literature
| S-EPMC8403095 | biostudies-literature
| S-EPMC3817481 | biostudies-literature
| S-EPMC4672750 | biostudies-literature
| S-EPMC7563758 | biostudies-literature
| S-EPMC6315549 | biostudies-literature
| S-EPMC3856068 | biostudies-literature