Unknown

Dataset Information

0

The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance.


ABSTRACT: The concordance of RNA-sequencing (RNA-seq) with microarrays for genome-wide analysis of differential gene expression has not been rigorously assessed using a range of chemical treatment conditions. Here we use a comprehensive study design to generate Illumina RNA-seq and Affymetrix microarray data from the same liver samples of rats exposed in triplicate to varying degrees of perturbation by 27 chemicals representing multiple modes of action (MOAs). The cross-platform concordance in terms of differentially expressed genes (DEGs) or enriched pathways is linearly correlated with treatment effect size (R(2)?0.8). Furthermore, the concordance is also affected by transcript abundance and biological complexity of the MOA. RNA-seq outperforms microarray (93% versus 75%) in DEG verification as assessed by quantitative PCR, with the gain mainly due to its improved accuracy for low-abundance transcripts. Nonetheless, classifiers to predict MOAs perform similarly when developed using data from either platform. Therefore, the endpoint studied and its biological complexity, transcript abundance and the genomic application are important factors in transcriptomic research and for clinical and regulatory decision making.

SUBMITTER: Wang C 

PROVIDER: S-EPMC4243706 | biostudies-literature | 2014 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance.

Wang Charles C   Gong Binsheng B   Bushel Pierre R PR   Thierry-Mieg Jean J   Thierry-Mieg Danielle D   Xu Joshua J   Fang Hong H   Hong Huixiao H   Shen Jie J   Su Zhenqiang Z   Meehan Joe J   Li Xiaojin X   Yang Lu L   Li Haiqing H   Łabaj Paweł P PP   Kreil David P DP   Megherbi Dalila D   Gaj Stan S   Caiment Florian F   van Delft Joost J   Kleinjans Jos J   Scherer Andreas A   Devanarayan Viswanath V   Wang Jian J   Yang Yong Y   Qian Hui-Rong HR   Lancashire Lee J LJ   Bessarabova Marina M   Nikolsky Yuri Y   Furlanello Cesare C   Chierici Marco M   Albanese Davide D   Jurman Giuseppe G   Riccadonna Samantha S   Filosi Michele M   Visintainer Roberto R   Zhang Ke K KK   Li Jianying J   Hsieh Jui-Hua JH   Svoboda Daniel L DL   Fuscoe James C JC   Deng Youping Y   Shi Leming L   Paules Richard S RS   Auerbach Scott S SS   Tong Weida W  

Nature biotechnology 20140824 9


The concordance of RNA-sequencing (RNA-seq) with microarrays for genome-wide analysis of differential gene expression has not been rigorously assessed using a range of chemical treatment conditions. Here we use a comprehensive study design to generate Illumina RNA-seq and Affymetrix microarray data from the same liver samples of rats exposed in triplicate to varying degrees of perturbation by 27 chemicals representing multiple modes of action (MOAs). The cross-platform concordance in terms of di  ...[more]

Similar Datasets

| S-EPMC6118309 | biostudies-literature
| S-EPMC4559005 | biostudies-literature
| S-EPMC4511015 | biostudies-literature
| S-EPMC4739097 | biostudies-literature
| S-EPMC3597146 | biostudies-literature
| S-EPMC4174954 | biostudies-literature
| S-EPMC5143225 | biostudies-literature
| S-EPMC9950146 | biostudies-literature
| S-EPMC4331702 | biostudies-literature
| S-EPMC9878344 | biostudies-literature