The Cep192-organized aurora A-Plk1 cascade is essential for centrosome cycle and bipolar spindle assembly.
Ontology highlight
ABSTRACT: As cells enter mitosis, the two centrosomes separate and grow dramatically, each forming a nascent spindle pole that nucleates a radial array of microtubules. Centrosome growth (and associated microtubule nucleation surge), termed maturation, involves the recruitment of pericentriolar material components via an as-yet unknown mechanism. Here, we show that Cep192 binds Aurora A and Plk1, targets them to centrosomes in a pericentrin-dependent manner, and promotes sequential activation of both kinases via T-loop phosphorylation. The Cep192-bound Plk1 then phosphorylates Cep192 at several residues to generate the attachment sites for the ?-tubulin ring complex and, possibly, other pericentriolar material components, thus promoting their recruitment and subsequent microtubule nucleation. We further found that the Cep192-dependent Aurora A-Plk1 activity is essential for kinesin-5-mediated centrosome separation, bipolar spindle formation, and equal centrosome/centriole segregation into daughter cells. Thus, our study identifies a Cep192-organized signaling cascade that underlies both centrosome maturation and bipolar spindle assembly.
SUBMITTER: Joukov V
PROVIDER: S-EPMC4245277 | biostudies-literature | 2014 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA