Project description:Recent studies have identified human myxovirus resistance protein 2 (MxB or Mx2) as an interferon induced inhibitor of HIV-1 replication. However, whether HIV-1 can overcome MxB restriction without compromise of viral fitness has been undefined. Here, we have discovered that naturally occurring capsid (CA) variants can render HIV-1 resistant to the activity of MxB without losing viral infectivity or the ability to escape from interferon induction. Moreover, these MxB resistant HIV-1 variants do not lose MxB recognition. Surprisingly, MxB resistant CA variants are most commonly found in the Clade C HIV-1 that is the most rapidly expanding Clade throughout the world. Accumulation of MxB resistant mutations is also observed during HIV-1 spreading in human populations. These findings support a potential role for MxB as a selective force during HIV-1 transmission and evolution.
Project description:UNLABELLED:The myxovirus resistance 2 (MX2) protein of humans has been identified recently as an interferon (IFN)-inducible inhibitor of human immunodeficiency virus type 1 (HIV-1) that acts at a late postentry step of infection to prevent the nuclear accumulation of viral cDNA (C. Goujon et al., Nature 502:559-562, 2013, http://dx.doi.org/10.1038/nature12542; M. Kane et al., Nature 502:563-566, 2013, http://dx.doi.org/10.1038/nature12653; Z. Liu et al., Cell Host Microbe 14:398-410, 2013, http://dx.doi.org/10.1016/j.chom.2013.08.015). In contrast, the closely related human MX1 protein, which suppresses infection by a range of RNA and DNA viruses (such as influenza A virus [FluAV]), is ineffective against HIV-1. Using a panel of engineered chimeric MX1/2 proteins, we demonstrate that the amino-terminal 91-amino-acid domain of MX2 confers full anti-HIV-1 function when transferred to the amino terminus of MX1, and that this fusion protein retains full anti-FluAV activity. Confocal microscopy experiments further show that this MX1/2 fusion, similar to MX2 but not MX1, can localize to the nuclear envelope (NE), linking HIV-1 inhibition with MX accumulation at the NE. MX proteins are dynamin-like GTPases, and while MX1 antiviral function requires GTPase activity, neither MX2 nor MX1/2 chimeras require this attribute to inhibit HIV-1. This key discrepancy between the characteristics of MX1- and MX2-mediated viral resistance, together with previous observations showing that the L4 loop of the stalk domain of MX1 is a critical determinant of viral substrate specificity, presumably reflect fundamental differences in the mechanisms of antiviral suppression. Accordingly, we propose that further comparative studies of MX proteins will help illuminate the molecular basis and subcellular localization requirements for implementing the noted diversity of virus inhibition by MX proteins. IMPORTANCE:Interferon (IFN) elicits an antiviral state in cells through the induction of hundreds of IFN-stimulated genes (ISGs). The human MX2 protein has been identified as a key effector in the suppression of HIV-1 infection by IFN. Here, we describe a molecular genetic approach, using a collection of chimeric MX proteins, to identify protein domains of MX2 that specify HIV-1 inhibition. The amino-terminal 91-amino-acid domain of human MX2 confers HIV-1 suppressor capabilities upon human and mouse MX proteins and also promotes protein accumulation at the nuclear envelope. Therefore, these studies correlate the cellular location of MX proteins with anti-HIV-1 function and help establish a framework for future mechanistic analyses of MX-mediated virus control.
Project description:Interferons limit viral replication by inducing intracellular restriction factors, such as the GTPase MxB (also designated MX2), which inhibits HIV-1 and, as recently shown, herpesviruses. Inhibition of these viruses occurs at ill-defined steps after viral entry and requires formation of MxB dimers or oligomers, but GTP hydrolysis is needed only for blocking herpesviruses. Together with previous findings on related MxA, the new research on MxB highlights the mechanistic diversity by which MX proteins interfere with viral replication.
Project description:Assembly of the HIV and other retroviruses is primarily driven by the oligomerization of the Gag polyprotein, the major viral structural protein capable of forming virus-like particles even in the absence of all other virally encoded components. Several critical determinants of Gag oligomerization are located in the C-terminal domain of the capsid protein (CA-CTD), which encompasses the most conserved segment in the highly variable Gag protein called the major homology region (MHR). The CA-CTD is thought to function as a dimerization module, although the existing model of CA-CTD dimerization does not readily explain why the conserved residues of the MHR are essential for retroviral assembly. Here we describe an x-ray structure of a distinct domain-swapped variant of the HIV-1 CA-CTD dimer stabilized by a single amino acid deletion. In the domain-swapped structure, the MHR-containing segment forms a major part of the dimerization interface, providing a structural mechanism for the enigmatic function of the MHR in HIV assembly. Our observations suggest that swapping of the MHR segments of adjacent Gag molecules may be a critical intermediate in retroviral assembly.
Project description:UnlabelledThe alpha interferon (IFN-α)-inducible restriction factor myxovirus B (MxB) blocks HIV-1 infection after reverse transcription but prior to integration. MxB binds to the HIV-1 core, which is composed of capsid protein, and this interaction leads to inhibition of the uncoating process of HIV-1. Previous studies suggested that HIV-1 restriction by MxB requires binding to capsid. This work tests the hypothesis that MxB oligomerization is important for the ability of MxB to bind to the HIV-1 core. For this purpose, we modeled the structure of MxB using the published tertiary structure of MxA. The modeled structure of MxB guided our mutagenic studies and led to the discovery of several MxB variants that lose the capacity to oligomerize. In agreement with our hypothesis, MxB variants that lost the oligomerization capacity also lost the ability to bind to the HIV-1 core. MxB variants deficient for oligomerization were not able to block HIV-1 infection. Overall, our work showed that oligomerization is required for the ability of MxB to bind to the HIV-1 core and block HIV-1 infection.ImportanceMxB is a novel restriction factor that blocks infection of HIV-1. MxB is inducible by IFN-α, particularly in T cells. The current work studies the oligomerization determinants of MxB and carefully explores the contribution of oligomerization to capsid binding and restriction. This work takes advantage of the current structure of MxA and models the structure of MxB, which is used to guide structure-function studies. This work leads to the conclusion that MxB oligomerization is important for HIV-1 capsid binding and restriction.
Project description:Myxovirus resistance 2 (MX2/MXB) is an interferon (IFN)-induced HIV-1 restriction factor that inhibits viral nuclear DNA accumulation. The amino-terminal domain of MX2 binds the viral capsid and is essential for inhibition. Using in vitro assembled Capsid-Nucleocapsid (CANC) complexes as a surrogate for the HIV-1 capsid lattice, we reveal that the GTPase (G) domain of MX2 contains a second, independent capsid-binding site. The importance of this interaction was addressed in competition assays using the naturally occurring non-antiviral short isoform of MX2 that lacks the amino-terminal 25 amino acids. Specifically, these experiments show that the G domain enhances MX2 function, and the foreshortened isoform acts as a functional suppressor of the full-length protein in a G-domain-dependent manner. The interaction of MX2 with its HIV-1 capsid substrate is therefore multi-faceted: there are dual points of contact that, together with protein oligomerization, contribute to the complexity of MX2 regulation.
Project description:Interferon-regulated myxovirus resistance protein B (MxB) is an interferon-induced GTPase belonging to the dynamin superfamily. It inhibits infection with a wide range of different viruses, including HIV-1, by impairing viral DNA entry into the nucleus. Unlike the related antiviral GTPase MxA, MxB possesses an N-terminal region that contains a nuclear localization signal and is crucial for inhibiting HIV-1. Because MxB previously has been shown to reside in both the nuclear envelope and the cytoplasm, here we used bioinformatics and biochemical approaches to identify a nuclear export signal (NES) responsible for MxB's cytoplasmic location. Using the online computational tool LocNES (Locating Nuclear Export Signals or NESs), we identified five putative NES candidates in MxB and investigated whether their deletion caused nuclear localization of MxB. Our results revealed that none of the five deletion variants relocates to the nucleus, suggesting that these five predicted NES sequences do not confer NES activity. Interestingly, deletion of one sequence, encompassing amino acids 505-527, abrogated the anti-HIV-1 activity of MxB. Further mutation experiments disclosed that amino acids 515-519, and Pro-515 in particular, regulate MxB oligomerization and its binding to HIV-1 capsid, thereby playing an important role in MxB-mediated restriction of HIV-1 infection. In summary, our results indicate that none of the five predicted NES sequences in MxB appears to be required for its nuclear export. Our findings also reveal several residues in MxB, including Pro-515, critical for its oligomerization and anti-HIV-1 function.
Project description:The Ty3 retrotransposon assembles into 50-nm virus-like particles that occur in large intracellular clusters in the case of wild-type (wt) Ty3. Within these particles, maturation of the Gag3 and Gag3-Pol3 polyproteins by Ty3 protease produces the structural proteins capsid (CA), spacer, and nucleocapsid. Secondary and tertiary structure predictions showed that, like retroviral CA, Ty3 CA contains a large amount of helical structure arranged in amino-terminal and carboxyl-terminal bundles. Twenty-six mutants in which alanines were substituted for native residues were used to study CA subdomain functions. Transposition was measured, and particle morphogenesis and localization were characterized by analysis of protein processing, cDNA production, genomic RNA protection, and sedimentation and by fluorescence and electron microscopy. These measures defined five groups of mutants. Proteins from each group could be sedimented in a large complex. Mutations in the amino-terminal domain reduced the formation of fluorescent Ty3 protein foci. In at least one major homology region mutant, Ty3 protein concentrated in foci but no wt clusters of particles were observed. One mutation in the carboxyl-terminal domain shifted assembly from spherical particles to long filaments. Two mutants formed foci separate from P bodies, the proposed sites of assembly, and formed defective particles. P-body association was therefore found to be not necessary for assembly but correlated with the production of functional particles. One mutation in the amino terminus blocked transposition after cDNA synthesis. Our data suggest that Ty3 proteins are concentrated first, assembly associated with P bodies occurs, and particle morphogenesis concludes with a post-reverse transcription, CA-dependent step. Particle formation was generally resistant to localized substitutions, possibly indicating that multiple domains are involved.
Project description:The human immunodeficiency virus (HIV-1 virus) exploits several host factors for assembly, infection, and replication within the infected cells. In this work, we describe the evidence for an interaction of the N-terminal domain of the HIV-1 capsid protein with human calmodulin. The precise role of this interaction within the life cycle of the HIV-1 virus is yet to be defined. Potential roles for this interaction in the viral capsid uncoating are discussed.
Project description:The capsid protein, CA, of HIV-1 forms a capsid that surrounds the viral genome. However, recent studies have shown that an important proportion of the CA molecule does not form part of this capsid, and its location and function are still unknown. In the present work we show, by using fluorescence, differential scanning calorimetry and Fourier-transform infrared spectroscopy, that the C-terminal region of CA, CA-C, is able to bind lipid vesicles in vitro in a peripheral fashion. CA-C had a greater affinity for negatively charged lipids (phosphatidic acid and phosphatidylserine) than for zwitterionic lipids [PC/Cho/SM (equimolar mixture of phosphatidylcholine, cholesterol and sphingomyelin) and phosphatidylcholine]. The interaction of CA-C with lipid membranes was supported by theoretical studies, which predicted that different regions, occurring close in the three-dimensional CA-C structure, were responsible for the binding. These results show the flexibility of CA-C to undergo conformational rearrangements in the presence of different binding partners. We hypothesize that the CA molecules that do not form part of the mature capsid might be involved in lipid-binding interactions in the inner leaflet of the virion envelope.