CBAP promotes thymocyte negative selection by facilitating T-cell receptor proximal signaling.
Ontology highlight
ABSTRACT: T-cell receptor (TCR)-transduced signaling is critical to thymocyte development at the CD4/CD8 double-positive stage, but the molecules involved in this process are not yet fully characterized. We previously demonstrated that GM-CSF/IL-3/IL-5 receptor common ?-chain-associated protein (CBAP) modulates ZAP70-mediated T-cell migration and adhesion. On the basis of the high expression of CBAP during thymocyte development, we investigated the function of CBAP in thymocyte development using a CBAP knockout mouse. CBAP-deficient mice showed normal early thymocyte development and positive selection. In contrast, several negative selection models (including TCR transgene, superantigen staphylococcal enterotoxin B, and anti-CD3 antibody treatment) revealed an attenuation of TCR-induced thymocyte deletion in CBAP knockout mice. This phenotype correlated with a reduced accumulation of BIM upon TCR crosslinking in CBAP-deficient thymocytes. Loss of CBAP led to reduced TCR-induced phosphorylation of proteins involved in both proximal and distal signaling events, including ZAP70, LAT, PLC?1, and JNK1/2. Moreover, TCR-induced association of LAT signalosome components was reduced in CBAP-deficient thymocytes. Our data demonstrate that CBAP is a novel component in the TCR signaling pathway and modulates thymocyte apoptosis during negative selection.
SUBMITTER: Ho KC
PROVIDER: S-EPMC4260732 | biostudies-literature | 2014 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA