G2/M cell cycle arrest correlates with primate lentiviral Vpr interaction with the SLX4 complex.
Ontology highlight
ABSTRACT: The accessory gene vpr, common to all primate lentiviruses, induces potent G2/M arrest in cycling cells. A recent study showed that human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) mediates this through activation of the SLX4/MUS81/EME1 exonuclease complex that forms part of the Fanconi anemia DNA repair pathway. To confirm these observations, we have examined the G2/M arrest phenotypes of a panel of simian immunodeficiency virus (SIV) Vpr proteins. We show that SIV Vpr proteins differ in their ability to promote cell cycle arrest in human cells. While this is dependent on the DCAF1/DDB1/CUL4 ubiquitin ligase complex, interaction with human DCAF1 does not predict G2/M arrest activity of SIV Vpr in human cells. In all cases, SIV Vpr-mediated cell cycle arrest in human cells correlated with interaction with human SLX4 (huSLX4) and could be abolished by small interfering RNA (siRNA) depletion of any member of the SLX4 complex. In contrast, all but one of the HIV/SIV Vpr proteins tested, including those that lacked activity in human cells, were competent for G2/M arrest in grivet cells. Correspondingly, here cell cycle arrest correlated with interaction with the grivet orthologues of the SLX4 complex, suggesting a level of host adaptation in these interactions. Phylogenetic analyses strongly suggest that G2/M arrest/SLX4 interactions are ancestral activities of primate lentiviral Vpr proteins and that the ability to dysregulate the Fanconi anemia DNA repair pathway is an essential function of Vpr in vivo.The Vpr protein of HIV-1 and related viruses is essential for the virus in vivo. The ability of Vpr to block the cell cycle at mitotic entry is well known, but the importance of this function for viral replication is unclear. Recent data have shown that HIV-1 Vpr targets the Fanconi anemia DNA repair pathway by interacting with and activating an endonuclease complex, SLX4/MUS81/EME1, that processes interstrand DNA cross-links. Here we show that the ability of a panel of SIV Vpr proteins to mediate cell cycle arrest correlates with species-specific interactions with the SLX4 complex in human and primate cells. The results of these studies suggest that the SLX4 complex is a conserved target of primate lentiviral Vpr proteins and that the ability to dysregulate members of the Fanconi anemia DNA repair pathway is essential for HIV/SIV replication in vivo.
SUBMITTER: Berger G
PROVIDER: S-EPMC4301105 | biostudies-literature | 2015 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA